It is also called a linear space. It is a space with the same rules of addition and real multiplication as plane vectors. The rules of calculation are the following rules that apply to plane vectors and space vectors. Let a , b , and c be any vectors, and k and l be any real numbers. (1) ( a + b ) + c = a + ( b + c ) (2) a + 0 = 0 + a = a (3) a + (- a ) = (- a ) + a = 0 (4) a + b = b + a (5) k ( a + b ) = ka + kb (6) ( kl ) a = k ( la ) (7) ( k + l ) a = ka + la (8) 1 a = a Strictly speaking, when addition and real multiplication are defined for a set and the rules (1) to (8) apply to this set, this set is called a vector space. In this case, the elements of the set are called vectors. Of course, the set of plane vectors and the set of space vectors are vector spaces in the sense just defined, but other examples include (1) the set of n- ary vectors, (2) the set of real-valued functions on a set, in particular the set of sequences, (3) various function spaces that appear in analysis, the set of continuous functions, the set of differentiable functions, the set of analytic functions, and (4) the set of polynomials in an indefinite element X. [Ryoichi Takagi] Linear Mapping A mapping f between two vector spaces commutes with addition and real multiplication, i.e., f ( ka + lb ) = kf ( a ) + lf ( b ). [Ryoichi Takagi] Isomorphism and DimensionTwo vector spaces are said to be isomorphic if there is a one-to-one correspondence between them through a linear mapping. A vector space that is isomorphic to an n - ary vector space is said to be finite-dimensional, with its dimension defined as n . In this case, there exist vectors a1 , a2 , …, an that correspond to the fundamental vectors e1 , e2 , …, en of the n -ary vector space, and any vector can be expressed in a unique way as a linear combination of them, that is, in the form k1a1 + k2a2 + …… + knan . Such a set of vectors a1 , a2 , … , an is called a base of the vector space. [Ryoichi Takagi] Matrices and Linear MapsLet f be a linear mapping from an m -dimensional vector space V to an n -dimensional vector space W. Also, define bases a1 , a2 , ..., am , and b1 , b2 , ..., bn in V and W , respectively. f ( a i )= F i 1 b 1 + F i 2 b 2 +……+ F in b n [Ryoichi Takagi] Dual space Given a vector space, there are many ways to start from it and construct a new vector space. Here, we will create what is called a dual vector space. Let V * be the set of linear forms in V. For any two elements, ψ, in V * , and any scalar k , we define two real-valued functions, +ψ and k , from V as (+ψ)( a )=( a )+ψ( a ). [Ryoichi Takagi] Metric vector spacesA vector space in which a function from two vectors to real numbers that satisfies the same calculation rules as the inner product of plane vectors is given is called a metric vector space. In a metric vector space, it is possible to measure the length of a vector and the angle between two vectors. The bases a 1 , …, a n of a metric vector space are said to be orthonormal when the length of each a i is 1 and they are mutually orthogonal. In this case, the inner product of two vectors x 1 a 1 +……+ x n a n and y 1 a 1 +……+ y n a n is calculated as x 1 y 1 +……+ x n y n . A metric vector space can always be an orthonormal system. [Ryoichi Takagi] [Reference] |Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
線形空間ともいう。平面ベクトルと同じ計算法則を満たす加法と実数倍の定められた空間をいう。ここにいう計算法則とは、平面ベクトルや空間ベクトルに対して成立する以下の法則のことである。いまa、b、cを任意のベクトル、k、lを任意の実数とするとき、(1)(a+b)+c=a+(b+c)(2)a+0=0+a=a(3)a+(-a)=(-a)+a=0(4)a+b=b+a(5)k(a+b)=ka+kb(6)(kl)a=k(la)(7)(k+l)a=ka+la(8)1a=aしたがって厳密には、ある集合に加法と実数倍が定義されていて、これについて法則(1)~(8)が成り立つときに、この集合をベクトル空間ということになる。またこのとき集合の元をベクトルという。 平面ベクトル、空間ベクトルの全体などは、もちろん、いま定義した意味でのベクトル空間であるが、他の例としては、〔1〕n項数ベクトルの全体、〔2〕一つの集合上の実数値関数の全体、とくに数列の全体、〔3〕解析学に現れるさまざまな関数空間、連続関数全体、微分可能な関数の全体、解析関数の全体、〔4〕不定元Xについての多項式全体などがある。 [高木亮一] 線形写像二つのベクトル空間の間の写像fは、加法および実数倍と可換なとき、つまり [高木亮一] 同形と次元二つのベクトル空間は、線形写像による1対1対応がつくとき、同形であるという。n項数ベクトル空間と同形なベクトル空間は、有限次元であるといい、その次元をnと定める。このとき、n項数ベクトル空間の基本ベクトルe1、e2、……、enに対応するベクトルa1、a2、……、anが存在して、任意のベクトルはそれらの線形結合、すなわちk1a1+k2a2+……+knanの形にただ一通りに表される。このようなベクトルa1、a2、……、anの組みを、ベクトル空間の一つの基という。 [高木亮一] 行列と線形写像m次元ベクトル空間Vからn次元ベクトル空間Wへの線形写像fをとる。また、V、Wにそれぞれ基a1、a2、……、am、およびb1、b2、……、bnを定めておく。 f(ai)=Fi1b1+Fi2b2+……+Finbn [高木亮一] 双対空間ベクトル空間が与えられると、そこから出発して、新しいベクトル空間を構成する方法が多数ある。ここでは、双対(そうつい)なベクトル空間といわれるものをつくってみよう。Vの線形形式全体をV*と置く。V*の任意の二元、ψと、任意のスカラーkに対して、Vからの二つの実数値関数、+ψ,kを [高木亮一] 計量ベクトル空間内積、つまり平面ベクトルでいう内積と同じ計算法則を満たす二つのベクトルから実数への関数が与えられているベクトル空間を、計量ベクトル空間という。計量ベクトル空間では、ベクトルの長さや、二つのベクトルの間の角度を測ることができる。計量ベクトル空間の基a1、……、anは、各aiの長さが1で、互いに直交するとき正規直交系であるという。このとき二つのベクトルx1a1+……+xnan,y1a1+……+ynanの内積は、x1y1+……+xnynと計算される。計量ベクトル空間にはかならず、正規直交系がとれる。 [高木亮一] [参照項目] |出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
<<: Pegmatite - Pegmatite (English spelling)
>>: Vector analysis - vector analysis
German Baroque composer. Born on April 6th in Gei...
…A general term for algae belonging to the diatom...
1048‐1131 Iranian poet, astronomy, mathematician, ...
Malt is dried and stored. The enzyme activity is s...
...A story. It is also called "Takamura Diar...
Also known as osmoregulation. A mechanism for main...
〘Noun〙 A woman who served at Ise Shrine in the pas...
...In 1868 (Meiji 1), the Kanagawa Magistrate'...
The abbreviation of the art movement group "A...
A universal constant that characterizes quantum m...
...Moreover, the succession of negative phenomena...
A Kabuki dance drama. Tokiwazu. The original titl...
A king of the Lapiths who appears in Greek mythol...
A long, narrow island in the southwest of the Phil...
1500‐66 French jurist. His Latin name was Carolus ...