Dimensional analysis

Japanese: 次元解析 - じげんかいせき
Dimensional analysis

An equation that expresses a physical law should hold true regardless of the units of physical quantities used. For this to happen, both sides must have the same dimension. Analysis based on this fact is called dimensional analysis.

All physical quantities (apart from electromagnetic ones for simplicity's sake) are defined as a combination of length, mass, and time. If we express each of these quantities as [ L ], [ M ], and [ T ], then velocity, for example, is defined as displacement (i.e. length) divided by time, so its dimension is [velocity] = [ LT -1 ].
Since acceleration is defined as the change in velocity divided by time, [Acceleration] = [ LT -2 ]
And since force is equal to the product of mass and acceleration according to Newton's law of motion, [force] = [ MLT -2 ]
A formula like the one above that expresses the composition of basic quantities is called a dimensional formula. It is not a simple number, the number of objects, or the ratio of masses.
= [ M ][ M ] -1
= [ M0 ]
Such a ratio is said to be dimensionless.

For physical quantities whose dimensional formula contains T raised to the power γ, when the unit of time is multiplied by r , the numerical value expressing the magnitude becomes 1/ times . The same is true for other basic quantities, so an equation expressing a physical law must have the physical quantities on both sides of the formula with the same dimensional formula. From this, it is sometimes possible to deduce the law. For example, the period of a simple pendulum with mass m and length l can be calculated by adding the gravitational acceleration g, as follows: (Period) = m α l β g γ × (Dimensionless constant)
It is expected that it can be made into the form

[Right side] = [ M ] α [ L ] β [ LT -2 ] γ = [ M α L β+γ T -2γ ]
This is the same as [left side] = [ T ] when α = 0, β + γ = 0, -2γ = 1
Therefore, γ=-1/2, β=1/2,

In dimensional analysis, we cannot determine dimensionless constants. According to mechanics, the constant in this case is 2π. To construct electromagnetic quantities, we usually add the dimension of electric current [ I ]. At the same time, we introduce a constant ε 0 , which has a dimension as the dielectric constant of vacuum, so care must be taken when performing dimensional analysis.

0 ]=[ L -3 M -1 T 4 I 2 ]
Dimensional analysis is also useful for discovering similarity laws and designing model experiments.

[Hiroshi Ezawa]

[Reference] | Dimension

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

物理法則を表す等式は、物理量の単位の選び方によらず成り立つはずである。そのためには、その両辺は同じ次元をもたなければならない。この事実に基づく解析を次元解析という。

 物理量は(簡単に説明するため電磁気的なものを別にすれば)すべて長さ、質量、時間の組合せで定義される。それぞれを[L]、[M]、[T]で表すと、たとえば速度は変位(つまり長さ)を時間で割って定義されるため、その次元は
  [速度]=[LT-1]
と書き表すことができる。加速度は速度の変化を時間で割って定義するため
  [加速度]=[LT-2]
そして力はニュートンの運動の法則により質量と加速度の積に等しいため
  [力]=[MLT-2]
である。基本量からの組み立てを表す先のような式を次元式という。単なる数や、物の個数、あるいは
[質量の比]
  =[M][M]-1
  =[M0]
のような比は無次元であるという。

 次元式のなかにTがγ乗で含まれている物理量は、時間の単位をr倍にすると、その大きさを表す数値が1/rγ倍になる。他の基本量についても同様であるため、物理法則を表す式は、その両辺の物理量が同じ次元式をもつものでなければならない。このことから法則の推定ができる場合もある。たとえば、質量m、長さlの単振り子の周期は、これに重力加速度gを加えて
  (周期)=mαlβgγ×(無次元の定数)
の形にすることができると予想される。

 [右辺]=[M]α[L]β[LT-2]γ=[MαLβ+γT-2γ]
これが[左辺]=[T]と同じになるのは
  α=0, β+γ=0, -2γ=1
のときである。よって、γ=-1/2, β=1/2となり、

で表されることがわかる。次元解析では無次元の定数までは定められない。力学によれば、この場合の定数は2πである。電磁気的な量を組み立てるには普通、電流の次元[I]を加える。同時に真空の誘電率として次元をもつ定数ε0を導入するので、その次元解析には注意を必要とする。

  [ε0]=[L-3M-1T4I2]
である。次元解析は相似法則の発見や模型実験の設計にも有用である。

[江沢 洋]

[参照項目] | 次元

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Test tube

>>:  Dictionary source - Zigen

Recommend

Moratin

Spanish playwright. One of the leading writers of ...

Sect of Buddhism - Buha Bukkyo

Around the time of King Ashoka, 100 or 200 years ...

Hua Tuo - Kada

Date of birth and death unknown. A famous doctor ...

Aranya - Aranya

〘Noun〙 (A transliteration of araṇya. Also written ...

Adélie Coast (English spelling)

…Later, the names of the captains were given to t...

Lycoris squamigera (English name) Lycorissquamigera

…[Tetsuichi Yahara]. … *Some of the terminology t...

Danaos - Danaos (English spelling)

He is the father of the 50 daughters of the Danai...

Transportation - Tired

The act of transporting timber from one point to a...

Visa Card (English)

...By the time of its merger with Bank of America...

Enbu

This is a ritual performed at the beginning of a G...

Khwārazm (English spelling)

The name of the region in Central Asia, located i...

Oshoya mawashi - Oshoya mawashi

...If we consider that the Bandai family needed t...

One-word sentence; holophrase

A sentence consisting of just one word. In other w...

optic vesicle

… [Tatsuta Eiko] [Eye development] The developmen...

Utsunomiya Kagetsuna

1235-1298 A military commander and poet of the Ka...