Three-Body Problem

Japanese: 三体問題 - さんたいもんだい
Three-Body Problem

This problem clarifies the motion of three celestial bodies that move according to a force (Newton's gravitational force) that is inversely proportional to the square of their mutual distance. The case of two celestial bodies is called the two-body problem, which was solved by Newton and whose properties of motion have been completely explained. The next problem, the three-body problem, was not solved despite the efforts of many researchers after Newton, and in the second half of the 19th century, Ernst Heinrich Bruns (1848-1919), Poincaré, and others proved that the three-body problem cannot be solved by finding integrals. This inability to solve is similar to the inability to solve quintic equations with arbitrary coefficients. However, quintic equations can be solved in the case of special coefficients. Special solutions have also been found for the three-body problem, where the three bodies are arranged in a special way. In these cases, the three bodies are located at the vertices of an equilateral triangle, and in other cases, the three bodies are located in special positions on a line (determined by the mass ratio of the three bodies), and both rotate around the center of gravity. These are called the equilateral triangle solution and the straight line solution, respectively. While linear solutions are unstable and do not exist in the solar system, equilateral triangular solutions are stable and several examples have been found in the solar system. As of April 2011, 4,852 Trojan asteroids have been discovered near the apex of an equilateral triangle with the Sun and Jupiter as its base, four on Mars, and seven on Neptune. Two similar asteroids have been discovered at the apex of an equilateral triangle with Saturn and its moon Tethys as one side, and two on Dione. In 1993, a special solution was discovered in which three bodies of equal mass move in an orbit that is shaped like a figure eight (the figure eight solution).

In the real solar system, the planets move around the Sun, which has a huge mass, and the moons move around the planet, which has a much larger mass than the moons, forming a hierarchical structure that approximately resembles a two-body problem. No examples have been found of three bodies with similar masses moving while exerting strong mutual interactions. The motion of celestial bodies in the solar system deviates only slightly from the two-body problem and can be handled using perturbation theory. Approximate solutions obtained by perturbation theory are accurate enough to fully explain high-precision observations. In this case, the effects of relativity must also be taken into account. However, approximate solutions obtained by perturbation theory are only valid within a finite time period, and cannot provide information about the state of motion in the infinite past and future in a mathematical sense.

The restricted three-body problem is a problem in which one of the three bodies is considered to have zero mass, and the motion of a celestial body with zero mass is determined by the gravitational forces of the other two bodies with finite masses. In this case, the two finite mass bodies are considered to be unaffected by the celestial body with zero mass. Even with this simplification, the fundamental difficulty of the three-body problem remains unchanged. However, when studying the motion of asteroids and moons, the restricted three-body problem is often the starting point.

[Kinoshita Sora]

"Lectures on Celestial Mechanics by Genichiro Hori (1988, University of Tokyo Press)" "Mechanics of Celestial Bodies and Orbits by Sora Kinoshita (1998, University of Tokyo Press)"

[References] | Moons | Asteroids | Perturbations | Saturn | Trojans | Two-body problem | Newton | Universal gravitation | Poincaré | Planets

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

相互距離の2乗に逆比例する力(ニュートンの万有引力)に従って動く3個の天体の運動を明らかにする問題。2個の天体の場合を二体問題といい、これはニュートンが解き、運動の性質は完全に解明されている。二体問題の次の三体問題は、ニュートン以後、多くの研究者の努力にもかかわらず解明されず、19世紀後半になって、ブルンスErnst Heinrich Bruns(1848―1919)、ポアンカレらによって、三体問題は積分を求めるという方法では解きえないことが証明された。この解けないということは、任意の係数をもった五次方程式が解けないことと似ている。しかし特殊な係数の場合には五次方程式は解ける。三体問題にも、三体が特殊な配置をしている特殊解がみつかっている。三体が正三角形の頂点に位置する場合と、三体が一直線上の特殊な位置(三体の質量比によって決まる)にいる場合であって、ともに重心の周りを回転していて、それぞれ正三角形解、直線解とよばれている。直線解は不安定であって太陽系内には存在しないが、正三角形解は安定であり、太陽系内にいくつかその例がみつかっている。2011年4月現在、太陽と木星を底辺とする正三角形の頂点付近にはトロヤ群小惑星が4852個、火星には4個、海王星には7個の同様な小惑星が発見されている。また土星とその衛星であるテチスを一辺とする正三角形の頂点に2個、同じくディオネには2個の同様な衛星が発見されている。1993年に、等質量の三体が8の字形をした軌道上を運動する特殊解(8の字解)が発見された。

 現実の太陽系内の惑星は巨大な質量をもった太陽の周りを、衛星は衛星の質量に比べてはるかに大きい質量をもっている惑星の周りを近似的には二体問題的運動をしているという階層構造をなしている。三体の質量が同程度で、互いに強い相互作用を及ぼし合って運動している例はみつかっていない。太陽系内の天体の運動は、二体問題からのずれは小さくて、摂動(せつどう)論を用いて取り扱える。摂動論によって得られる近似解は高精度観測をも十分に説明しうる精度をもっている。この際には相対論による効果をも考慮しなければならない。しかし摂動論によって得られる近似解は、有限の時間内でのみ有効であって、数学的な意味での無限の過去と未来の運動の状況についての情報は、この近似解からは得られない。

 制限三体問題とは、三体のうちの一つの質量を0と考え、他の二体の有限質量の引力で、質量0の天体の運動を求める問題をいう。このとき有限質量の二体は質量0の天体の影響は受けないと考える。このように簡単化しても三体問題の本質的困難さはなんら変わりない。しかし小惑星・衛星(月)の運動を研究するには、制限三体問題から出発することが多い。

[木下 宙]

『堀源一郎著『天体力学講義』(1988・東京大学出版会)』『木下宙著『天体と軌道の力学』(1998・東京大学出版会)』

[参照項目] | 衛星 | 小惑星 | 摂動 | 土星 | トロヤ群 | 二体問題 | ニュートン | 万有引力 | ポアンカレ | 惑星

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Santa Catarina (state)

>>:  Third generation successor

Recommend

geographical latitude

…coordinates with the origin at the center of the...

Dorippe frascone (English spelling) Dorippefrascone

…The carapace is relatively wide and flat. The ye...

Ul'chi people - Ul'chi people (English spelling)

They are an indigenous people living in the Khabar...

Kawagoe Railway - Kawagoe Railway

...The main lines are the Ikebukuro Line between ...

Hikojiro Nakagawa

Year of death: October 7, 1901 (Meiji 34) Year of ...

Viracocha

A creator god in Inca mythology. He appeared on La...

Strong yen - Endaka (English spelling) strong yen

A strong yen (weak yen) means that the value of th...

Tachikue Gorge

The canyon of the Kobe River in Izumo City, weste...

Acupuncture points

In acupuncture and moxibustion treatment, the poi...

Pen Club - Pen Club

The PEN Club was founded in London in 1921 by Bri...

Wakura [Hot Springs] - Wakura

A hot spring in Nanao City, Ishikawa Prefecture. E...

Imagireguchi - Imagireguchi

...It used to be a freshwater lake separated from...

Elm

〘Noun〙 (elm) English name of the genus Ulmus of th...

Negligent crime - kasithan

This refers to cases where an act committed throu...

Arkansas Stone - Arkansas Stone

...The name comes from the fact that a few drops ...