Radial measure - Kodoho

Japanese: 弧度法 - こどほう
Radial measure - Kodoho

A method of expressing the size of an angle. The sexagenary system is a method of measuring the size of an angle by dividing the circumference into 360 equal parts, while the radian system literally measures the size of an angle by the length of the arc. The unit is the size of the central angle in a circle with a radius of 1 and an arc with a length of 1, and is called 1 radian or 1 radian. According to this system, a flat angle (180 degrees) has an arc length of π (pi is the circular constant), so in the radian system it is π radians. Similarly, a right angle (90 degrees) is π/2 radians. Generally, if an angle of α degrees in the sexagenary system is x radians in the radian system, then

This allows you to convert from sexagenary to radian units and vice versa. For example, the special angles 30 degrees, 45 degrees, and 60 degrees are calculated as follows:

30°=π/6, 45°=π/4, 60°=π/3
90°=π/2, 120°=(2π)/3, 180°=π
To express the size of a general angle in radian measures, a half-line that has the center O of a circle with a radius of 1 as its end point and passes through a point A on the circumference is used as the base. This half-line is called the initial line or primitive line. When point A moves counterclockwise on the circumference, the angle is given a positive sign, and when it moves in the same direction as the hands of the clock, the sign is negative. Point P on the circumference is determined by moving θ along the circumference. In this case, the size of the angle as the amount of rotation from the initial line OA to the moving radius OP is θ radians. Consider a circle with a radius of 1 centered on the origin O on a coordinate plane, and take A as the unit point on the horizontal axis. As mentioned above, the abscissa of point P, which is determined from a single number θ, is cosθ and the ordinate is sinθ. In this way, cosine and sine are determined as real-valued functions of real variables. The trigonometric functions used in calculus are defined in this way. The starting point for differentiation of trigonometric functions is the limit value of sinθ/θ, the ratio of the sine of θ to θ, as θ approaches zero, which is 1, in other words

That is what it means.

[Toshio Shibata]

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

角の大きさを表す方法の一つ。円周を360等分して角の大きさを測る方法が六十分法であるが、弧度法は文字どおり弧の長さで角の大きさを測る。半径が1の円で長さが1の弧に対する中心角の大きさを単位とし、1弧度、あるいは1ラジアンという。この方法によれば、平角(180度)は、これに対応する弧の長さがπ(円周率をπとする)であるから、弧度法ではπラジアンとなる。同様に直角(90度)はπ/2ラジアンとなる。一般に、六十分法でα度の角が弧度法でxラジアンであるとすると、

これによって六十分法から弧度法へ、弧度法から六十分法へ換算することができる。たとえば、30度、45度、60度、という特殊な角は、次のようになる。

30°=π/6, 45°=π/4, 60°=π/3
90°=π/2, 120°=(2π)/3, 180°=π
 弧度法で一般角の大きさを表すには、半径が1の円の中心Oを端点とし円周上の1点Aを通る半直線を基準とする。この半直線を始線あるいは原線という。円周上を点Aが時計の針と逆回りに動くとき正、時計の針と同じ回り方で動くとき負として、角に符号をつける。円周に沿ってθだけ進むと円周上の点Pが定まる。このとき、始線OAから動径OPに至る回転量としての角の大きさがθラジアンである。座標平面で原点Oを中心とする半径1の円を考え横軸上の単位点をAにとるとき、前述のように一つの数θから定まる点Pの横座標がcosθであり、縦座標がsinθである。こうして、余弦、正弦が実変数の実数値関数として確定する。微積分で扱う三角関数は、このように定義されたものである。三角関数の微分の出発点は、θに対するθの正弦の比sinθ/θのθがゼロに近づくときの極限値が1、つまり

ということである。

[柴田敏男]

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Ancient Capitals Preservation Law

>>:  Gotobeido - The Way of Five Pounds of Rice

Recommend

PSI - PSI

Proliferation Security Initiative : A proliferatio...

NK cells

Natural killer cell Source : Internal Medicine, 10...

Golden Moso Bamboo - Golden Moso Bamboo

...In the Kyoto area, bamboo shoots are fitted wi...

Oxford University Press

…Printed and bound by a bookstore [Minowa Shigeo]...

Prague School of Linguistics

A school of linguistics formed in the mid-1920s by...

Torreya

…An evergreen conifer of the Taxaceae family foun...

Yamato

In the narrow sense, it was a region of Nara Prefe...

Hollow - Hollow

The guard force of the Kenmu government. The only ...

Pawnbroker

Under the Ritsuryo system, reclaimed land was pawn...

Salaryman Finance - Salaryman Finance

This refers to the business of providing small, u...

Bastet

...She was the consort of Ptah and the mother of ...

Astilbe chinensis (English spelling) Astilbechinensis

… [Munemin Yanagi]. … *Some of the terminology th...

Funehiki [town] - Funehiki

A former town in Tamura County in the Abukuma High...

rasta

…(4) Degrees according to the capabilities of hum...

Asthetic Categories (English)

...Also, if we consider humans as individuals, th...