Aerodynamic heating

Japanese: 空力加熱 - くうりきかねつ
Aerodynamic heating

A phenomenon in which the air heats up an aircraft when it flies at high speeds through the air. When a flying object such as an airplane, rocket, or spacecraft moves through the air at high speeds (hypersonic speed = six times the speed of sound, or speeds of Mach 6 or higher), the temperature of the flying object's structure rises due to adiabatic compression near the stagnation point at the leading end of the flying object (fuselage, wings, etc.) and viscous friction within the boundary layer. The effect of this aerodynamic heating on the structure of the flying object, which reduces the strength of materials, is a serious obstacle to ultra-high speed flight. Just as the obstacles caused by shock waves when breaking through the sound barrier (increased resistance and vibration) were once called the "sound barrier" to high-speed flight, aerodynamic heating during hypersonic flight is called the "heat barrier."

The temperature rise due to aerodynamic heating at the front end of the projectile can be calculated using the following formula (excluding the temperature rise due to surface friction).

ΔT = ( T 0 +273)×0.2 M 2
ΔT is the temperature rise due to aerodynamic heating, T0 is the atmospheric temperature, and M is the Mach number.

According to this formula, even at Mach 2.0, the temperature is about 180°C, so in the stratosphere (more than 10,000 meters above the earth's surface, where the temperature is minus 57°C), the air temperature at the tip exceeds 100°C. The speed at which the Space Shuttle re-enters the atmosphere is about Mach 7.0. After re-entering the atmosphere, the temperature at the tip of the aircraft (nose, leading edge of the main wing, leading edge of the vertical stabilizer) is 1410-1440°C. For this reason, tiles (silica material) that can withstand 1648°C (3000) are attached to these parts. However, the other parts use heat-resistant tiles that can withstand temperatures of up to 649°C (1200) and 1260°C (2300). The tiles cover 90% of the surface of the aircraft, and the total number of tiles reaches 34,000.

[Kazuo Ochiai]

"Flying - Its Mechanism and Fluid Dynamics" by Seiichi Iida (1994, Ohmsha) "Supersonic Flow Theory" by Namisuke Kubota (2003, Sankaido)

[Reference] | High-speed flight | Space Shuttle

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

空気中を高速度で飛行すると、空気によって機体が加熱される現象。航空機、ロケット、宇宙船などの飛翔(ひしょう)体が、空気中を高速度(極超音速=音の速さの6倍、マッハ6以上の速度)で運動するとき、飛翔体の前端(胴体や翼など)のよどみ点付近における断熱圧縮と、境界層内部における粘性摩擦とによって、飛翔体の構造の温度が上昇する。こうした空力加熱による材料の強度低下で、飛翔体の構造に及ぼす影響は超高速飛行に対する重大な障害となっている。高速飛行に対して、かつては音速突破時の衝撃波による障害(抵抗増大や振動の発生)を「音の障壁」とよんでいたのと同様、極超音速飛行時では空力加熱を「熱の障壁」といっている。

 飛翔体前端部の空力加熱による温度上昇は次の式で求めることができる(表面の摩擦による温度上昇は除く)。

  ΔT=(T0+273)×0.2M2
ΔTは空力加熱による温度上昇、T0は大気温度、Mはマッハ数である。

 この式によると、マッハ2.0でも約180℃となるから、成層圏(地表より1万メートル以上の高空で、気温はマイナス57℃)では先端部での空気温度は100℃を超すことになる。またスペースシャトルが大気圏に再突入するときの速度はマッハ7.0程度になる。スペースシャトルでは、大気圏突入後の温度は、機体の先端部(機首、主翼の前縁部、垂直尾翼の前縁部)で1410~1440℃になる。そのためこの部分は1648℃(3000)に耐えられるタイル材(シリカ材)が貼(は)ってある。ただし、その他の部分は649℃(1200)および1260℃(2300)までの耐熱タイルを使い分けている。タイルは機体表面では90%に貼られており、その数は3万4000枚に達する。

[落合一夫]

『飯田誠一著『飛ぶ――そのしくみと流体力学』(1994・オーム社)』『久保田浪之介著『超音速の流れ学』(2003・山海堂)』

[参照項目] | 高速飛行 | スペースシャトル

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Couple of forces

>>:  Kuya

Recommend

Gnathostoma hispidum

… [Shomei Kojima]. … *Some of the terminology tha...

Clément Janequin

French composer. Born in Châtellerault. After wor...

Value scale - Kachishakudo

… [Economics of Money] [Definition and Function o...

Zensobou - All ancestors' wish

A Chinese scholar in the mid-Qing dynasty. His pe...

Necropsar leguati (English spelling)

...They always live in small groups, perched on t...

Kisa [town] - Kisa

A former town in Futami County in the central-east...

The Carried Away - The Carried Away

…After the Fronde (1648-53) began, he published s...

biomimetic chemistry

...Research into enzyme-like functional substance...

Through meat - Kanniku

...In the pleasure quarters of the Edo period, pe...

Result stage - Kadan

...The large fruits grow on an upright stem, maki...

petiole

…Leaves are made up of a petiole and a blade, and...

Tsukumi [city] - Tsukumi

A city facing Tsukumi Bay in the eastern part of O...

Olympic Era - Olympic Kigen

...However, since the number of tribes increased ...

Arcadia

…therefore, they played no prominent role in Gree...

Masaesyli

...The inhabitants of the ancient Maghreb spoke B...