Space lattice - Kuukankoushi (English spelling) space lattice

Japanese: 空間格子 - くうかんこうし(英語表記)space lattice
Space lattice - Kuukankoushi (English spelling) space lattice

When three fundamental vectors a , b , and c are not on the same plane, the position vector is
r = n 1 a + n 2 b + n 3 c
( n1 , n2 , n3 are any integers)
A three-dimensional arrangement of points whose positions are given by is called a space lattice, and is mainly used to represent crystal structures. It is also called a crystal lattice or a Bravais lattice after Auguste Bravais (1811-1863), the Frenchman who classified it. In alloys, the crystal lattice of the low-temperature phase is called a superlattice.

A parallelepiped is formed by connecting the points determined by the eight combinations where n1 , n2 , and n3 are either 0 or 1. This is called a unit cell, and the six quantities a , b , and c , the lengths (periods) of the base vectors, and the angles (axial angles) between them, α = ∠( b , c ), β = ∠( b , a ), and γ = ∠( a , c ), are called lattice constants. The unit cell is the basic unit of crystal structure, and the entire crystal structure is expressed by the translation (parallel movement) of the direction along the base vectors (crystal axes). a , b , and c are the basic periods of the crystal lattice. Crystal systems are classified into seven types based on the relationship between these lattice constants. In 1850, Bravais classified the space lattices corresponding to these crystal systems into 14 types ( Figure ).

[Shinmyo Iwamoto, August 19, 2015]

[Reference] | Crystal | Crystal structure | Alloy | Body-centered lattice | Body-centered cubic lattice | Unit lattice | Monoclinic lattice | Simple lattice | Base-centered lattice | Face-centered cubic lattice | Cubic lattice | Hexagonal lattice
Crystal system and Bravais lattice (figure)
©Shogakukan ">

Crystal system and Bravais lattice (figure)


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

同一平面上にない3本の基本ベクトルabcをとるとき、位置ベクトルは、
  rn1an2bn3c
   (n1n2n3は任意の整数)
で位置が与えられる点のつくる三次元的配列を空間格子といい、おもに結晶構造の表現に用いられる。結晶格子あるいはこれを分類したフランスのブラベAuguste Bravais(1811―1863)の名によってブラベ格子Bravais latticeともよばれる。合金では、低温相の結晶格子を規則格子super latticeという。

 n1n2n3が0か1となる8種の組合せによって定まる点を結ぶと平行六面体ができる。これを単位格子または単位胞unit cellとよび、基本ベクトルの長さ(周期)abcおよびそれらの間でつくる角(軸角)α=∠(b, c)、β=∠(b, a)、γ=∠(a, c)の6種の量を格子定数lattice constantという。単位格子は結晶構造の基本単位であり、基本ベクトルに沿った方向(結晶軸)の並進(平行移動)によって結晶構造全体が示される。abcは結晶格子の基本周期である。これらの格子定数の間に成立する関係によって、7種の結晶系に分類される。1850年ブラベは、これらの結晶系に対応する空間格子を14種に分類した()。

[岩本振武 2015年8月19日]

[参照項目] | 結晶 | 結晶構造 | 合金 | 体心格子 | 体心立方格子 | 単位格子 | 単斜格子 | 単純格子 | 底心格子 | 面心立方格子 | 立方格子 | 六方格子
結晶系とブラベ格子〔図〕
©Shogakukan">

結晶系とブラベ格子〔図〕


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Spatial frequency

>>:  Raumkunst; Spatial arts

Recommend

Wisteria sinensis - Wisteria sinensis

…[Yamabe Tomoyuki]. … *Some of the terms that men...

Vladimir Fyodorovich Minorskii

1877‐1966 A Russian-born Islamic scholar. He studi...

Warren truss

…However, from around this time, truss structures...

Yenangyaung (English spelling)

A town in central Myanmar, 46km north of Magway on...

Okawagari - Okawagari

…After the fall of Osaka Castle, Ieyasu granted Y...

Cryptophilus

…There are many species in tropical rainforests. ...

Gerona - Gerona (English spelling)

The capital of the province of Gerona in the Cata...

Yue-weicao-tang bi-ji (English)

A collection of strange tales from the Qing Dynast...

Alsace (English spelling)

In German, it is called Elsass. It is a region in ...

Arapiles - Arapiles

…In the Comuneros Revolt (1519-21), the city rebe...

Otto Art - Otto Bijutsu

German art of the early Middle Ages flourished ove...

Shokasonjuku

A private school opened in Hagi-cho, Choshu Domai...

ÖVP (English spelling)

...Alongside referendums, national petitions (Vol...

Ahem - Ahem

...The alcohol content is around 4% (by volume). ...

Osmeña - Osmeña (English spelling) Sergio Osmeña

Philippine politician. Born in Cebu City, Cebu Is...