Base - Kitei (English spelling) base

Japanese: 基底 - きてい(英語表記)base
Base - Kitei (English spelling) base
Also known simply as a base or basis, this name is given to the basis that generates various mathematical structures. It is often used in neighborhood systems, topology, vector spaces, and Abelian groups. (1) Basis of a neighborhood system This refers to a fundamental neighborhood system. (2) Basis of a topology If T is a topology of a topological space S and B is a family of open sets in S , then if TB and any element of T can be expressed as the union of elements of B (not necessarily finitely many), then B is said to be a basis of T. (3) Basis of a vector space If x0 is a vector, then all vectors on a line parallel to x can be expressed as a x ( a is a real number). If a is any real number, then the set V1 of a x obtained by assigning all real values ​​to a creates a one-dimensional vector space. In this case, x is called the basis of V1 . In general, when any vector x in an n -dimensional vector space Vn can be expressed as x = x1e1 + x2e2 + ... + xnen as a linear combination of linearly independent vectors e1 , e2 , ... , en in V , the set of e1 , e2 , ..., en is called a basis of Vn , and the set of real numbers x1 , x2 , ..., xn are called the components of x with respect to this basis. (4) Basis of an Abelian Group In an abelian group A , if any element a of A can be written in exactly one way as a = c1x1 + c2x2 + ... + cnxn ( where ci are integers), then the set of elements x1 , x2 , ..., xn of A is called a basis of A.

Source: Encyclopaedia Britannica Concise Encyclopedia About Encyclopaedia Britannica Concise Encyclopedia Information

Japanese:
単に底または基ともいい,数学のさまざまな構造について,それを生成する基になるものについてこの名がつけられている。近傍系,位相,ベクトル空間,アーベル群などによく使われる。 (1) 近傍系の基底 基本近傍系のことをいう。 (2) 位相の基底 位相空間 S の位相 TS の開集合の族 B に対し,TB であって,T の任意の元が B の (必ずしも有限個でない) 元の和集合として表わされるならば,BT の基底であるという。 (3) ベクトル空間の基底  x0 を1つのベクトルとするとき,x に平行な直線上にあるすべてのベクトルは,ax ( a は実数) で表わすことができる。 a を任意の実数とするとき,a にすべての実数値を与えて得られる ax の集合 V1 は,1次元ベクトル空間をつくる。このとき x をこの V1 の基底という。一般に,n 次元ベクトル空間 Vn の任意のベクトル x がこの V における1次独立なベクトル e1e2,…,en の1次結合として xx1e1x2e2+…+xnen と表わされるとき,e1e2,…,en の組を Vn の基底といい,実数の組 x1x2,…,xn をこの基底に関する x の成分という。 (4) アーベル群の基底 アーベル群 A において,A の任意の元 aac1x1c2x2+…+cnxn ( ci は整数) という形にただ1通りに書けるとき,A の元 x1x2,…,xn の集合を A の基底という。

出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報

<<:  Regulations - Rules

>>:  Kite - Kite (English spelling) Ainu

Recommend

bibliomaniac

...People who have this hobby are called biblioph...

Creation myth

This refers to myths about the origin of the world...

Chibinda Ilunga (English spelling)

…It was named after a ruler who bore the title Mw...

Torroja, E. (English spelling) TorrojaE

...The expression of irrationality through ration...

Guji - Guji

…The famous Okitsu sea bream is from Suruga Bay a...

star-glory

...The seeds are black-brown and elongated. The Q...

Hurrians - Hurrians

A people who played an important role in the histo...

Itobu

The percentage of raw silk obtained from a certain...

saung gauk (English spelling) saunggauk

...Bow harp from Myanmar. Its correct name is sau...

Altarist

…A brotherhood had its own altar in a particular ...

Sky View - Kuugan

〘Noun〙 A Buddhist term. The observation that all t...

Iami

...The prototype is considered to be the represen...

Azar, P.

… [Development of the French Positivism] In the 2...

Dong Yong

He is the protagonist of a legend about a filial s...

Macrolepiota procera - Macrolepiota procera

Basidiomycetes, Agaricales, Agaricales. It grows s...