Gaussian plane

Japanese: ガウス平面 - がうすへいめん
Gaussian plane

When complex number z = a + bi corresponds to point P(a,b) on the coordinate plane, there is a one-to-one correspondence between points on the plane and complex numbers. A plane considered by associating complex numbers in this way is called a Gaussian plane, or complex plane. P(a,b) is expressed as P(z) or simply z , and the x-axis is called the real axis and the y-axis is called the imaginary axis. It was Gauss who expressed complex numbers as points on a plane as an extension of real numbers being represented as points on a line, and graphically described their relationship with the four arithmetic operations.

For complex number z = a + bi

is called the absolute value of z and is denoted by | z |. When z≠0, the angle θ between the half line OP and the positive direction of the real axis is called the argument of z and is denoted by arg z . Usually, θ is limited to -π<θ≦π or 0≦θ<2π. Also, the argument of z =0 is not considered. arg is an abbreviation for argument ( Figure A ). If the absolute value | z | of the complex number z =a+b i (≠0) is r and the argument arg z is θ, then a= r cosθ,b= r sinθ, and therefore z= r (cosθ+ i sinθ)
This is called the polar form of z .

For complex numbers z1 = a1 + b1i , z2 = a2 + b2i , z1 + z2 = ( a1 + a2 ) + ( b1 + b2 ) i
Therefore, z 1 + z 2 represent the vertices of the parallelogram formed by the origin O, point z 1 , and point z 2. Also, since point -z 2 is the symmetric point of point z 2 with respect to point O, point z 1 - z 2 can be obtained by forming a parallelogram from O, z 1 , and -z 2 ( Figure B ). When considering the product and quotient of complex numbers, the polar form is used.

z 1 = r 1 (cosθ 1 + i sinθ 1 ),
z 2 = r 2 (cosθ 2 + i sinθ 2 )
Then, using the addition theorem of trigonometric functions, z 1 z 2r 1 r 2 {cos(θ 1 +θ 2 )+ i sin(θ 1 +θ 2 )}
Therefore, since the absolute value of z 1 z 2 is r 1 r 2 and the argument is θ 1 + θ 2 , z 1 z 2 can be constructed from the initial two points z 1 and z 2 as follows. First, take point Q, which is obtained by rotating point z 2 by θ 1 around the origin. Next, take a point on the half line OQ, which is OQ multiplied by r 1. This point is z 1 z 2 ( Figure C ). Also,

Therefore, the point z 1 / z 2 can also be constructed by rotating and scaling in a similar manner.

[Terada Fumiyuki]

nth root of 1

For a natural number n, a complex number that satisfies x n = 1 is called the nth root of 1. There are exactly n nth roots of 1, and they can be expressed as follows.


To see that the nth root of 1 is like this, we use de Moivre's theorem. Express the solution of x n = 1 in polar form as x = r (cosθ + i sinθ) ( r > 0, 0 < θ < 2π).
Then, according to de Moivre's theorem, r n (cosnθ+ i sinnθ)=1
Considering the absolute value and argument, r n =1, nθ=2 k π
If we place these points on a Gaussian plane, they will divide the unit circle into n equal parts, as shown in Figure D. In particular, the number when k = 1 is

Taking, the n-th root of 1 is 1,ε,ε 12 ,……,ε n-1
It can be seen that it is a cyclic group of order n with ε as a generating element. If you connect the points on the Gaussian plane that represent the nth root of 1 in order, you will obtain a regular n-gon. In particular, when n = 17, constructing a regular heptadecagon means constructing the 17th root of 1, and the 19-year-old Gauss discovered how to do this by solving x 17 = 1. This is said to have been the starting point that led Gauss to study mathematics.

[Terada Fumiyuki]

[Reference] | Cyclotomic polynomials | Complex numbers
Gaussian plane (Figure A)
©Shogakukan ">

Gaussian plane (Figure A)

Gaussian plane (Figure B)
©Shogakukan ">

Gaussian plane (Figure B)

Gaussian plane (Figure C)
©Shogakukan ">

Gaussian plane (Figure C)

Gaussian plane (Fig. D)
©Shogakukan ">

Gaussian plane (Fig. D)


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

座標平面上の点P(a,b)に、複素数z=a+biを対応させると、平面上の点と複素数とが1対1に対応づけられる。このようにして複素数を対応づけて考えた平面をガウス平面、または複素平面という。P(a,b)をP(z)あるいは単にzと表し、x軸を実軸、y軸を虚軸という。実数が直線上の点で表されることの拡張として、複素数を平面上の点で表し、四則演算との関係を図形的に述べたのはガウスである。

 複素数z=a+biに対して

zの絶対値といい|z|で表す。またz≠0のとき半直線OPと実軸の正の方向とのなす角θをzの偏角といい、argzで表す。普通は、θを-π<θ≦πまたは0≦θ<2πに限ることが多い。また、z=0の偏角は考えない。argはargumentの略である(図A)。複素数z=a+bi(≠0)の絶対値|z|をr、偏角argzをθとすると、a=rcosθ,b=rsinθとなるので
  z=r(cosθ+isinθ)
と表される。これをzの極形式という。

 複素数z1=a1+b1iz2=a2+b2iに対して
  z1z2=(a1+a2)+(b1+b2)i
であるから、z1z2は原点O、点z1、点z2からつくられる平行四辺形の頂点を表す。また点-z2は点Oに関する点z2の対称点であるから、点z1z2はO、z1、-z2から平行四辺形をつくればよい(図B)。複素数の積と商を考えるときには、極形式を用いる。

  z1r1(cosθ1isinθ1),
  z2r2(cosθ2isinθ2)
とすると、三角関数の加法定理を用いて
  z1z2r1r2{cos(θ1+θ2)+isin(θ1+θ2)}
となる。そこでz1z2は、絶対値がr1r2で、偏角がθ1+θ2であるから、初めの2点z1z2からz1z2を作図するには、次のようにすればよい。まず、点z2を原点の周りにθ1だけ回転した点Qをとる。次に半直線OQ上に、OQをr1倍した点をとる。その点がz1z2である(図C)。また、

であるから、点z1/z2も、同様に回転と伸縮によって作図することができる。

[寺田文行]

1のn乗根

自然数nに対して、xn=1を満たす複素数を1のn乗根という。1のn乗根はちょうどn個あって、それらは次のように表される。


1のn乗根がこのようになることをみるには、ド・モアブルの定理を用いる。xn=1の解を極形式で表して
  x=r(cosθ+isinθ) (r>0,0≦θ<2π)
とすると、ド・モアブルの定理から
  rn(cosnθ+isinnθ)=1
となり、これから絶対値と偏角を考えて
  rn=1, nθ=2kπ
となる。これらをガウス平面上にとると、図Dに示したように、単位円をn等分する点になる。このうちとくにk=1のときの数

をとると、1のn乗根は
  1,ε,ε12,……,εn-1
となり、εを生成要素とする位数nの巡回群であることがわかる。1のn乗根を表すガウス平面上の点を順に結ぶと正n角形が得られる。とくにn=17のとき、正十七角形を作図するということは、1の17乗根を作図するということであり、19歳の青年ガウスは、x17=1の解法によってその作図方法を発見した。これがガウスをして数学の研究に向かわしめた発端であったといわれている。

[寺田文行]

[参照項目] | 円周等分多項式 | 複素数
ガウス平面〔図A〕
©Shogakukan">

ガウス平面〔図A〕

ガウス平面〔図B〕
©Shogakukan">

ガウス平面〔図B〕

ガウス平面〔図C〕
©Shogakukan">

ガウス平面〔図C〕

ガウス平面〔図D〕
©Shogakukan">

ガウス平面〔図D〕


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Gaussian method

>>:  Gaussian distribution

Recommend

Pentlandite - Pentlandite

It is one of the nickel-iron sulfide minerals, an...

Isoborneol

exo -1,7,7-trimethylbicyclo[2.2.1]heptan-2-ol . C...

Campanulaceae

...It seems that folk religious practitioners con...

limbus patrum

…The word Limbo comes from the Latin word limbus,...

Reka Vakhsh (English spelling)

It is a large tributary of the great Amu Darya riv...

Bubalornithinae

…This family is a relatively well-organized group...

siglos

… After conquering Lydia in 547 BC, the Achaemeni...

Ubaid period

This cultural period follows the Halaf period in M...

Amusement park - amusement park

An area formed for recreational purposes such as ...

Parenting ghost - Kosodate Yuurei

This is a folktale about a pregnant woman who dies...

Minnelli, V. (English spelling)

...During wartime, musical films became a kind of...

Vagarshapat

…Population: 37,000 (1974). Until 1945 it was cal...

Fregata magnificens (English spelling)

...This is probably a primitive group of Pelecani...

Roverbal, GP (English) RoverbalGP

... The basis of the scales we use today, other t...

Hideo Yoshino

Poet. Born in Gunma Prefecture. Dropped out of Ke...