Body - field (English)

Japanese: 体 - たい(英語表記)field
Body - field (English)

When all elements of a commutative ring K, except for the zero element, become a group through multiplication, K is called a field. In a field, the four arithmetic operations of addition, subtraction, multiplication, and division can be performed. The set of rational numbers Q, the set of real numbers R, and the set of complex numbers C become fields through the four usual arithmetic operations with numbers. They are called the rational number field, the real number field, and the complex number field, respectively. A field has an identity element different from the zero element and is a commutative ring with no zero divisors, that is, an integral domain. Just as the set of integers Z is an integral domain but not a field, integral domains are different from fields, but just as the rational number field Q can be constructed by creating fractions from the integer ring Z, from any integral domain A, a field K={a/b|a,b∈A,b≠0}, which is called the quotient field of A, can be constructed.
For example, the quotient field of the integral domain k[X] of all polynomials with coefficients in field k is the field of rational functions k(X)={f(X)/g(X)|f(X),
g(X)∈k[X],g(X)0
It is.

For a commutative ring A with identity, mod A/ɑ={a+ɑ|a∈A} by an ideal ɑ,
A/ɑ:field ⇔ɑ:A maximal ideal holds. This property can be used to create a field. For example, the set of integers Z・p that are divisible by a prime number p is a maximal ideal of the integer ring Z, so the quotient ring Z/Z・p is a field. This field Z/Z・p has p elements 0+Z・p, 1+Z・p,
……,(p-1)+Z・p
A field that consists of a finite number of elements like this is called a finite field, while a field that has an infinite number of elements like Q, R, and C is called an infinite field.

A one-to-one mapping ρ from a field K onto a field K′ is ρ(a+b)=ρ(a)+ρ(b),
ρ(ab)=ρ(a)ρ(b) (ab∈K)
If K is a field that is a square root of K', then ρ is called an isomorphism from K onto K'. In this case, the inverse map ρ -1 of ρ is also an isomorphism from K' onto K, and the two fields K and K' have the same properties as fields. For this reason, when there is an isomorphism from K onto K', the fields K and K' are said to be isomorphic.

Let us now take ω = (-1 +)/2, and let Q(ω) be the set of all complex numbers f(ω) obtained by substituting ω into the polynomial f(X) with Q coefficients. It is easy to see that this set Q(ω) is an integral domain using numerical addition and multiplication, but it is actually a field. In fact, if we note that ω is the root of the polynomial p(X) = X2 + X+1, then for polynomial f(X), if f(ω) ≠ 0, then a(X)f(X) + b(X)p(X) = 1
This is because there exists a(X),b(X)∈Q[X] that satisfies the above equation, and substituting X=ω into this equation shows that f(ω) -1 =a(ω)∈Q(ω). Furthermore, it is known that the field Q(ω) is isomorphic to Q[X]/ɑ, which is the maximal ideal ɑ of all polynomials in the polynomial ring Q[X] that are divisible by p(X), and that the elements of Q(ω) can be uniquely written in the form a+bω(a,b∈Q). A complex number α that is the root of a polynomial with rational coefficients that is not a zero polynomial, like ω above, is generally called an algebraic number, and for such an α, Q(α)=
{f(α)∈C|f(X)∈Q[X]}
contains Q similar to Q(ω) and is a field contained in C. Such a field is called an algebraic number field.

When a field k is included in a field K and the four arithmetic operations of any elements a and b of k are the same as the four arithmetic operations when a and b are considered as elements of K, the field k is called a subfield of field K. Q is a subfield of R, R is a subfield of C, and the aforementioned Q(α) is a subfield of C. Field K has a unique smallest subfield F. F is isomorphic to either the field of rational numbers Q or Z/Z·p (p is a prime number). Depending on the case, we say that the characteristic of K is 0 or p. The characteristic of a field of numbers such as Q,R,C,Q(α) is 0, and the characteristic of (Z/Z p )(X) is p. In a field of characteristic p,
p・a=0,
(a+b) p =a p +b p (a,b∈K)
holds, and the behavior is quite different from that of fields in characteristic zero.

Fields were devised by Dedekind and others in connection with problems such as finding the roots of polynomials algebraically, and have become one of the important basic concepts in algebra today.

[Tsuneo Kanno]

[References] | Ideals | Rings | Real numbers | Homomorphic mappings | Domains | Algebra | Polynomial rings | Dedekind | Complex numbers | Rational numbers

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

可換環Kの零元以外の元全体が乗法で群になるとき、Kを体という。体においては、足し算、引き算、掛け算、割り算の四則演算ができる。有理数全体Q、実数全体R、複素数全体Cは、普通の数の四則で体になる。それぞれ有理数体、実数体、複素数体という。体は、零元と異なる単位元をもち、零因子のない可換環、つまり整域である。整数全体Zは整域であるが体でないように、整域は体と異なるが、整数環Zから分数をつくって有理数体Qを構成するように、任意の整域Aから、Aの商体といわれる体
  K={a/b|a,b∈A,b≠0}
がつくれる。たとえば、体k係数の多項式全体の整域k[X]の商体は、k上の有理関数体
  k(X)={f(X)/g(X)|f(X),
  g(X)∈k[X],g(X)0}
である。

 単位元をもつ可換環Aのイデアルɑによる剰余環A/ɑ={a+ɑ|a∈A}に対して、
  A/ɑ:体
   ⇔ɑ:Aの極大イデアル
が成り立つ。この性質を用いて体をつくることができる。たとえば、ある素数pで割り切れる整数全体Z・pは整数環Zの極大イデアルであるから、剰余環Z/Z・pは体になる。この体Z/Z・pはp個の元
  0+Z・p,1+Z・p,
  ……,(p-1)+Z・p
からなっている。このように有限個の元からなる体を有限体といい、Q、R、Cのように無限個の元をもつ体を無限体という。

 体Kから体K′の上への一対一写像ρが
  ρ(a+b)=ρ(a)+ρ(b),
  ρ(ab)=ρ(a)ρ(b) (ab∈K)
を満たすとき、ρをKからK′の上への同形写像という。このとき、ρの逆写像ρ-1もK′からKの上への同形写像となり、二つの体K、K′は、体として同じ性質をもつ。このゆえに、KからK′の上への同形写像があるとき、体Kと体K′は同形であるという。

 いまω=(-1+)/2をとり、Q係数の多項式f(X)にωを代入して得られる複素数f(ω)全体の集合をQ(ω)とする。この集合Q(ω)は、数の加法と乗法で整域になっていることはすぐわかるが、実は体である。実際、ωが多項式p(X)=X2+X+1の根であることに注意すると、多項式f(X)に対し、f(ω)≠0なら
  a(X)f(X)+b(X)p(X)=1
を満たすa(X),b(X)∈Q[X]があるが、この式にX=ωを代入してf(ω)-1=a(ω)∈Q(ω)が示されるからである。さらに、体Q(ω)は、多項式環Q[X]の、p(X)で割り切れる多項式全体のつくる極大イデアルɑによるQ[X]/ɑに同形であり、Q(ω)の元は、a+bω(a,b∈Q)の形に一意的に書けることが知られている。前のωのように、零多項式でない有理数係数の多項式の根になっている複素数αを、一般に代数的数というが、このようなαに対し
  Q(α)=
  {f(α)∈C|f(X)∈Q[X]}
は、Q(ω)と同じようなQを含み、Cに含まれる体になる。このような体を代数数体という。

 体kが体Kに含まれ、kの任意の元a、bの四則演算が、a、bをKの元とみなした四則演算に一致するとき、体kを体Kの部分体という。QはRの、RはCの部分体であり、前述のQ(α)はCの部分体である。体Kには、ただ一つの最小の部分体Fがある。Fは有理数体Qか、またはZ/Z・p(pはある素数)のいずれかに同形である。それぞれの場合に従って、Kの標数は0であり、またはpであるという。Q,R,C,Q(α)のような数の体の標数は0であり、(Z/Zp)(X)の標数はpである。標数pの体では、
  p・a=0,
  (a+b)p=ap+bp (a,b∈K)
が成り立ち、標数0の体とだいぶようすが違う。

 体はデーデキントらによって、多項式の根を代数的に求める問題などに関連して考え出されたが、今日の代数学の重要な基本概念の一つになっている。

[菅野恒雄]

[参照項目] | イデアル | | 実数 | 準同形写像 | 整域 | 代数学 | 多項式環 | デーデキント | 複素数 | 有理数

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Trifoliate orange (English name: trifoliate orange)

>>:  Karasuyama [town] - Karasuyama

Recommend

svabhāva-kāya (English spelling) svabhavakaya

...In Mahayana Buddhism, the thought of the Buddh...

Noh play - Utaigoto

...In general, the structure is <verse → secti...

Address - 1st floor

It refers to the main place of residence of each ...

Korea-U.S. Economic and Technical Assistance Agreement

…He became Prime Minister after the April Revolut...

《Ezumi ni yugu》 - Dedicated to Ezumi

...American Jewish novelist. Born and raised in N...

Protostar - Genshisei (English spelling)

In molecular clouds (dark nebulae), matter contra...

Chatterton, Thomas

Born: 20 November 1752, Bristol [Died] August 24, ...

hyacinth

… [Hideo Minato] [jewelry] Zircon has a high refr...

Boat ride - Yoribune

Since the Kamakura and Muromachi periods, this ter...

Honjo method - Honjo method

Laws for the management of household affairs and ...

Far Left - Kyokusa

("Sa" means left wing) An extremely radi...

Masaccio - Masaccio (English spelling)

Italian painter. His real name was Tommaso di Ser...

Izu-Ogasawara Trench - Izu-Ogasawara Trench

The Izu-Ogasawara Trench is approximately 850 km l...

Sphincter - Sphincter

A circular muscle is a ring-shaped muscle that tig...

Davies, J.

…It was produced mainly in the United States and ...