When all elements of a commutative ring K, except for the zero element, become a group through multiplication, K is called a field. In a field, the four arithmetic operations of addition, subtraction, multiplication, and division can be performed. The set of rational numbers Q, the set of real numbers R, and the set of complex numbers C become fields through the four usual arithmetic operations with numbers. They are called the rational number field, the real number field, and the complex number field, respectively. A field has an identity element different from the zero element and is a commutative ring with no zero divisors, that is, an integral domain. Just as the set of integers Z is an integral domain but not a field, integral domains are different from fields, but just as the rational number field Q can be constructed by creating fractions from the integer ring Z, from any integral domain A, a field K={a/b|a,b∈A,b≠0}, which is called the quotient field of A, can be constructed. For a commutative ring A with identity, mod A/ɑ={a+ɑ|a∈A} by an ideal ɑ, A one-to-one mapping ρ from a field K onto a field K′ is ρ(a+b)=ρ(a)+ρ(b), Let us now take ω = (-1 +)/2, and let Q(ω) be the set of all complex numbers f(ω) obtained by substituting ω into the polynomial f(X) with Q coefficients. It is easy to see that this set Q(ω) is an integral domain using numerical addition and multiplication, but it is actually a field. In fact, if we note that ω is the root of the polynomial p(X) = X2 + X+1, then for polynomial f(X), if f(ω) ≠ 0, then a(X)f(X) + b(X)p(X) = 1 When a field k is included in a field K and the four arithmetic operations of any elements a and b of k are the same as the four arithmetic operations when a and b are considered as elements of K, the field k is called a subfield of field K. Q is a subfield of R, R is a subfield of C, and the aforementioned Q(α) is a subfield of C. Field K has a unique smallest subfield F. F is isomorphic to either the field of rational numbers Q or Z/Z·p (p is a prime number). Depending on the case, we say that the characteristic of K is 0 or p. The characteristic of a field of numbers such as Q,R,C,Q(α) is 0, and the characteristic of (Z/Z p )(X) is p. In a field of characteristic p, Fields were devised by Dedekind and others in connection with problems such as finding the roots of polynomials algebraically, and have become one of the important basic concepts in algebra today. [Tsuneo Kanno] [References] | | | | | | | | | |Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
可換環Kの零元以外の元全体が乗法で群になるとき、Kを体という。体においては、足し算、引き算、掛け算、割り算の四則演算ができる。有理数全体Q、実数全体R、複素数全体Cは、普通の数の四則で体になる。それぞれ有理数体、実数体、複素数体という。体は、零元と異なる単位元をもち、零因子のない可換環、つまり整域である。整数全体Zは整域であるが体でないように、整域は体と異なるが、整数環Zから分数をつくって有理数体Qを構成するように、任意の整域Aから、Aの商体といわれる体 単位元をもつ可換環Aのイデアルɑによる剰余環A/ɑ={a+ɑ|a∈A}に対して、 体Kから体K′の上への一対一写像ρが いまω=(-1+)/2をとり、Q係数の多項式f(X)にωを代入して得られる複素数f(ω)全体の集合をQ(ω)とする。この集合Q(ω)は、数の加法と乗法で整域になっていることはすぐわかるが、実は体である。実際、ωが多項式p(X)=X2+X+1の根であることに注意すると、多項式f(X)に対し、f(ω)≠0なら 体kが体Kに含まれ、kの任意の元a、bの四則演算が、a、bをKの元とみなした四則演算に一致するとき、体kを体Kの部分体という。QはRの、RはCの部分体であり、前述のQ(α)はCの部分体である。体Kには、ただ一つの最小の部分体Fがある。Fは有理数体Qか、またはZ/Z・p(pはある素数)のいずれかに同形である。それぞれの場合に従って、Kの標数は0であり、またはpであるという。Q,R,C,Q(α)のような数の体の標数は0であり、(Z/Zp)(X)の標数はpである。標数pの体では、 体はデーデキントらによって、多項式の根を代数的に求める問題などに関連して考え出されたが、今日の代数学の重要な基本概念の一つになっている。 [菅野恒雄] [参照項目] | | | | | | | | | |出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
<<: Trifoliate orange (English name: trifoliate orange)
>>: Karasuyama [town] - Karasuyama
...In Mahayana Buddhism, the thought of the Buddh...
...In general, the structure is <verse → secti...
It refers to the main place of residence of each ...
…He became Prime Minister after the April Revolut...
...American Jewish novelist. Born and raised in N...
In molecular clouds (dark nebulae), matter contra...
Born: 20 November 1752, Bristol [Died] August 24, ...
… [Hideo Minato] [jewelry] Zircon has a high refr...
Since the Kamakura and Muromachi periods, this ter...
Laws for the management of household affairs and ...
("Sa" means left wing) An extremely radi...
Italian painter. His real name was Tommaso di Ser...
The Izu-Ogasawara Trench is approximately 850 km l...
A circular muscle is a ring-shaped muscle that tig...
…It was produced mainly in the United States and ...