There are many theorems known as Euler's formula, but the following are the most representative: (1) Formula for fractional expressions: E n = a n /( a - b )( a - c ) + b n /( b - a )( b - c ) + c n /( c - a )( c - b ). In particular, E 1 = 0, E 2 = 1, E 3 = a + b + c . Or a formula that extends this to k variables. (2) Formula for the formal identity relationship between the functions e x , sin x , and cos x in the domain of complex numbers: e ix = cos x + i sin x ( x is a real number). Also, since e - ix = cos x - i sin x , cos x = ( e ix + e - ix )/2, sin x = ( e ix - e - ix )/2 i . This formula evolved from a formal formula into a theorem with true mathematical meaning in the 19th century, when the theory of functions of complex variables developed. (3) Regarding the curvature of a curve on a surface: 1/ R = cos 2 θ/ R 1 + sin 2 θ/ R 2. This is an important formula related to the basics of surface theory. On the tangent plane at any point on a surface, there exist two directions in which the curvature 1/ R of the "cut" of the surface at that point (the curve that appears on the surface by cutting the surface with any plane that contains the normal to the surface at that point) has a maximum value 1/ R 1 and a minimum value 1/ R 2 , and these two directions are perpendicular to each other on the tangent plane. In this formula, θ is the angle between the tangent to the "cut" and the direction that gives the curvature 1/ R 1 . Source: Encyclopaedia Britannica Concise Encyclopedia About Encyclopaedia Britannica Concise Encyclopedia Information |
オイラーの公式と呼ばれる定理は多数あるが,次のものが代表的である。 (1) 分数式に関するもの En=an/(a-b)(a-c)+bn/(b-a)(b-c)+cn/(c-a)(c-b) を表わす公式。特に E1=0 ,E2=1 ,E3=a+b+c など。あるいはこれを k 変数に拡張した公式。 (2) 複素数の領域における関数 ex , sin x , cos x の間の形式的恒等関係に関する公式 eix= cos x+i sin x ( x は実数) 。また e-ix= cos x-i sin x であるから, cos x=(eix+e-ix)/2 , sin x=(eix-e-ix)/2i 。この公式は 19世紀にいたり複素変数の関数論が発展した段階で,形式的な公式から真に数学的意味をもつ定理へ発展した。 (3) 曲面上の曲線の曲率に関するもの 1/R= cos 2θ/R1+ sin 2θ/R2 。これは,曲面論の初歩に関する重要な公式である。曲面上の任意の点における接平面上には,その点における曲面の「切り口」 (この点における曲面の法線を含む任意の平面で,曲面を切ることによってその曲面上に現れる曲線) の曲率 1/R が,最大値 1/R1 および最小値 1/R2 をとる2つの方向が存在し,この2つの方向は,接平面上で互いに垂直である。この公式で θ は,「切り口」の接線と曲率 1/R1 を与える方向との間の角である。
出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報 |
<<: Euler's fixed point theorem
...The subfamily Cupressaceae includes species su...
British theatre company. In 1960, they were direct...
… 【history】 The first periodical in the form of a...
《 intrusion prevention system 》A system that monit...
Born: August 5, 1802, Finui Island [Died] April 6,...
…A box-shaped piece of furniture for storing thin...
…Of particular importance is the commentary on th...
During the Edo period, this branch domain of the ...
Shock Therapy 1. A type of treatment for mental di...
A composer who represents the first period of the ...
A word that expresses aesthetic sense and values ...
A city in the southwest of Shizuoka Prefecture. It...
What is the disease? Bad breath is the smell that...
The freedom to choose the occupation one wishes t...
This mountain castle from the Azuchi-Momoyama peri...