There are many theorems known as Euler's formula, but the following are the most representative: (1) Formula for fractional expressions: E n = a n /( a - b )( a - c ) + b n /( b - a )( b - c ) + c n /( c - a )( c - b ). In particular, E 1 = 0, E 2 = 1, E 3 = a + b + c . Or a formula that extends this to k variables. (2) Formula for the formal identity relationship between the functions e x , sin x , and cos x in the domain of complex numbers: e ix = cos x + i sin x ( x is a real number). Also, since e - ix = cos x - i sin x , cos x = ( e ix + e - ix )/2, sin x = ( e ix - e - ix )/2 i . This formula evolved from a formal formula into a theorem with true mathematical meaning in the 19th century, when the theory of functions of complex variables developed. (3) Regarding the curvature of a curve on a surface: 1/ R = cos 2 θ/ R 1 + sin 2 θ/ R 2. This is an important formula related to the basics of surface theory. On the tangent plane at any point on a surface, there exist two directions in which the curvature 1/ R of the "cut" of the surface at that point (the curve that appears on the surface by cutting the surface with any plane that contains the normal to the surface at that point) has a maximum value 1/ R 1 and a minimum value 1/ R 2 , and these two directions are perpendicular to each other on the tangent plane. In this formula, θ is the angle between the tangent to the "cut" and the direction that gives the curvature 1/ R 1 . Source: Encyclopaedia Britannica Concise Encyclopedia About Encyclopaedia Britannica Concise Encyclopedia Information |
オイラーの公式と呼ばれる定理は多数あるが,次のものが代表的である。 (1) 分数式に関するもの En=an/(a-b)(a-c)+bn/(b-a)(b-c)+cn/(c-a)(c-b) を表わす公式。特に E1=0 ,E2=1 ,E3=a+b+c など。あるいはこれを k 変数に拡張した公式。 (2) 複素数の領域における関数 ex , sin x , cos x の間の形式的恒等関係に関する公式 eix= cos x+i sin x ( x は実数) 。また e-ix= cos x-i sin x であるから, cos x=(eix+e-ix)/2 , sin x=(eix-e-ix)/2i 。この公式は 19世紀にいたり複素変数の関数論が発展した段階で,形式的な公式から真に数学的意味をもつ定理へ発展した。 (3) 曲面上の曲線の曲率に関するもの 1/R= cos 2θ/R1+ sin 2θ/R2 。これは,曲面論の初歩に関する重要な公式である。曲面上の任意の点における接平面上には,その点における曲面の「切り口」 (この点における曲面の法線を含む任意の平面で,曲面を切ることによってその曲面上に現れる曲線) の曲率 1/R が,最大値 1/R1 および最小値 1/R2 をとる2つの方向が存在し,この2つの方向は,接平面上で互いに垂直である。この公式で θ は,「切り口」の接線と曲率 1/R1 を与える方向との間の角である。
出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報 |
<<: Euler's fixed point theorem
An old town occupying the mountainous area in the ...
A prefecture-level city in the northern tip of He...
An old city on the eastern edge of Ehime Prefectur...
…Periodic table element symbol = Sn Atomic number...
...Depending on the assembly of these components,...
…It can also be translated as “Green People.” The...
A perennial saprophytic plant of the family Celas...
The title of a Gagaku/Bugaku piece. It is in the I...
…The 1860 Treaty of Amity and Commerce of England...
A village in the eastern part of New York State, U...
…It is a term used to describe the change in form...
The former name of a town (Uenohara-machi) was in...
A palace built in Qufu, Shandong Province, by Liu ...
Arabic for a boy or a servant, especially a slave ...
...When moving into a new house, it was necessary...