… a ( b ∪ c )= ab ∪ ac , ( b ∪ c ) a = ba ∪ caa ( b ∩ c )= ab ∩ ac , ( b ∩ c ) a = ba ∩ caThis condition is equivalent to a ≦ b ⇒ ac ≦ bc , ca ≦ cb when G is considered as an ordered set. In a lattice group G , if x >1 (identity element) and y is any element, then for any natural number n , if xn > y , then G is said to be an Archimedean lattice group. In the set Q of positive rational numbers, if we take two elements a and b , and reduce them to m / d and n / d , and define a ∪ b = (the greatest common divisor of m and n )/ d and a ∩ b = (the least common multiple of m and n )/ d , then a ∪ b and a ∩ b are determined regardless of the method of reducing them, and become Archimedean lattice groups. … *Some of the terminology explanations that mention "Archimedean bundle groups" are listed below. Source | Heibonsha World Encyclopedia 2nd Edition | Information |
… a(b∪c)=ab∪ac,(b∪c)a=ba∪ca a(b∩c)=ab∩ac,(b∩c)a=ba∩caこの条件はGを順序集合と考えたとき, a≦b ⇒ ac≦bc,ca≦cbということと同値である。 束群Gにおいて,x>1(単位元)であり,yが任意の元ならば,適当な自然数nをとれば,xn>yとなるとき,Gはアルキメデス的束群であるという。 正の有理数全体Qにおいて,二元a,bをとったとき,それを通分して,m/d,n/dと表し,a∪b=(mとnの最大公約数)/d,a∩b=(mとnの最小公倍数)/dと定めると,a∪b,a∩bは通分のしかたにはかかわらず決まり,アルキメデス的束群になる。… ※「アルキメデス的束群」について言及している用語解説の一部を掲載しています。 出典|株式会社平凡社世界大百科事典 第2版について | 情報 |
>>: Archimedes - Archimedes (English spelling)
This mine is located in Kazuno City, northeastern...
A county in the upper reaches of the Qingshui Rive...
In Chinese Taoism, this refers to famous mountain ...
In Russian, it is called Kremlin Кремль/Kreml'...
("99" means a large number) Starting fro...
A form of building ownership in which a building i...
Born: 24 October 1854, Sherborne, Gloucestershire ...
A table with a structure that allows the table sur...
...After many twists and turns, the group formed ...
…According to Paul’s Epistle to the Romans, chapt...
An insect belonging to the order Hymenoptera, fam...
… Pelargonium [Munemin Yanagi]. . . *Some of the ...
A general term for experimental and innovative fi...
…It was only natural that in England, French-styl...
…The name Amakusa first appeared in the Shoku Nih...