Gauss-Laplace theorem - Gauss-Laplace theorem

Japanese: ガウス=ラプラスの定理 - ガウスラプラスのていり(英語表記)Gauss‐Laplace theorem
Gauss-Laplace theorem - Gauss-Laplace theorem
This is also known as the de Moivre-Laplace theorem, and is one of the most important and fundamental limit theorems in probability theory that has been known for a long time. In n Bernoulli trials, where the probability of success is p , the number of successes Sn follows a binomial distribution. That is, P ( Snk )nCkpkqn k ( where q =1- p ) . From this, for some arbitrary constants a and b (> a ), when n →∞, it approaches N ( b ) -N ( a ). Here , N ( x ) is the standard Gaussian distribution function. In other words, this shows that if we change the scale appropriately, Sn is close to a normal distribution near the mean value np .

Source: Heibonsha World Encyclopedia, 2nd Edition Information

Japanese:
これはド・モアブル=ラプラスの定理ともいい,古くから知られているもっとも重要で基本的な確率論の極限定理の一つである。成功する確率がpであるn回のベルヌーイ試行において,成功する回数Snは二項分布に従う。すなわちP(Snk)=nCkpkqnk(ただしq=1-p)。これからかってな定数ab(>a)に対して,n→∞のときはN(b)-N(a)に近づく。ここにN(x)は標準ガウス分布関数である。すなわち,このことは適当に尺度を変えると,Snは平均値npの近くで正規分布に近いことを示す。

出典 株式会社平凡社世界大百科事典 第2版について 情報

<<:  Gause's law

>>:  Gauss meter

Recommend

Tamizo Miyazaki

Year of death: August 15, 1928 Year of birth: 20th...

Libra - Scales

〘Noun〙 In the Edo period, the Shogunate granted a ...

Lukáš Pražský (English spelling) Lukas Prazsky

...At first, most of the members were low-class p...

Macrobrachium longipes (English spelling) Macrobrachium longipes

… [Takeda Masatomo]. … *Some of the terminology t...

Nasori

The title of a Komagaku piece in gagaku. It is als...

Raeburn, H.

...The Swiss J.H. Füssli, who was a close friend ...

Miron Costin

1633‐91 A Romanian chronicler of note. His major w...

RNA virus

…It exists in all cells from higher plants to bac...

Coma Cluster of Galaxies

...It was traditionally part of the constellation...

Desensitization therapy - Genkansaryoho

This is a treatment for type I allergic diseases ...

Opera Arts - Kageki Geijutsu

…The themes of the plays, like those of literatur...

short picture

...Toei succeeded in expanding the market with do...

Omiyo no kata - Omiyo no kata

Year of death: 1872 (Meiji 5) Year of birth: Unkno...

Stability Fund Scheme

...In the case of raw milk, this is a system to m...

Ascottie

… The following types of neckties are currently i...