This is an examination method that obtains information about the inside of a living body by utilizing the penetrating properties of X-rays, a type of electromagnetic wave with a short wavelength. It consists of the following three processes: (1) X-rays are generated and irradiated onto the living body. (2) The X-rays are attenuated and absorbed inside the living body. (3) The X-rays that have passed through the living body are converted into a visible image. Immediately after the German physicist Roentgen discovered X-rays in 1895, attempts were made to apply them to medicine, and thanks to the development of X-ray generators, X-ray film, fluorescent materials, as well as X-ray image intensifiers, X-ray television, X-ray tomography devices, continuous X-ray devices, and flat panel detectors (FPDs), examinations using X-rays have now come to occupy such an important position that they account for 20% of all medical procedures. With the addition of the computed tomography device, developed by Hounsfield et al. in the UK in 1972 and said to have revolutionized modern medicine in less than 10 years, its importance as an examination in clinical medicine is expected to increase even more in the future. [Kuni Otomo August 20, 2021] X-ray generatorX-rays are defined as ionizing electromagnetic radiation produced by the conversion of the kinetic and potential energy of electrons into electromagnetic radiation. Therefore, to generate X-rays, two elements are required: an X-ray tube with a cathode, which is the source of electrons, and a focal point (anode) where the electrons collide and convert their energy into X-rays, and a generator to accelerate the electrons to collide with the focal point. The X-ray tube used by Roentgen was based on the principle that a gas was sealed in a glass tube, and the positive ions produced by the ionization of the gas generated electrons from the cathode, which collided with the glass tube wall to generate X-rays. In this case, it was difficult to maintain a constant partial pressure of the gas inside the glass tube, and it was not possible to generate X-rays of a constant intensity. In 1913, American experimental physicist Coolidge developed a vacuum X-ray tube that used a tungsten filament as the cathode and generated electrons by passing an electric current through it, thus solving the problem of partial pressure of the gas. In addition, to obtain clear X-ray images, it is desirable to make the focal spot small so that many X-rays can be generated in a short time. For this purpose, a rotating anode was developed that tilts the focal spot at an acute angle to the direction in which the X-rays are generated, making the apparent size small, and also rotates about 10,000 times per second to dissipate heat, making it possible to generate a large amount of X-rays in a short time. Furthermore, the generator that accelerates the electrons has the function of creating a high potential difference using a transformer and maintaining a constant voltage using a rectifier circuit, and the wavelength of the X-rays generated by the voltage applied to the generator can be adjusted to change the penetration inside the body. The strength of the current passed through the X-ray tube is proportional to the amount of X-rays generated. [Kuni Otomo August 20, 2021] Attenuation and absorption of X-rays in vivoX-rays with energies of 150 kilovolts or less used in X-ray examinations are mainly attenuated and absorbed by the photoelectric effect and Compton scattering (Compton effect) in the body, and the components in the body are divided into four categories of X-ray transmittance, in order of decreasing order: air, fat, soft tissue, water, and bone. When the energy of X-rays is low, the difference in attenuation and absorption due to the photoelectric effect is large depending on the atomic number of the component, and when the energy of X-rays is high, the proportion of attenuation and absorption due to Compton scattering rather than the photoelectric effect increases, and the difference in attenuation and absorption between each component becomes smaller. Therefore, chest X-rays, which need to show changes in the soft tissue around the ribs, should use high-energy X-rays to weaken the contrast between bone and soft tissue, and breast X-rays, which are used to check for calcification in the soft tissue, should use low-energy X-rays to increase the contrast between the soft tissue and the calcified areas. [Kuni Otomo August 20, 2021] Conversion of transmitted X-rays into a visible imageX-rays cannot be seen by the human eye, so the uneven distribution of X-rays that have passed through living organisms must be converted into a visible image, and inorganic crystals such as calcium tungstate CaWO4 , zinc sulfide ZnS, and cadmium sulfide CdS, which can convert the energy of X-rays into light in the visible range, as well as rare earth elements with good optical efficiency and fluorescent substances such as cesium iodide CsI have been used. Recently, a method has been developed and applied that directly converts X-rays into electrical signals using amorphous selenium semiconductors, etc. Methods for converting X-rays into visible images were previously classified into direct photography (film coated with photographic emulsion is sandwiched between intensifying screens containing fluorescent substances. The transmitted X-rays are converted into photons by the intensifying screens, which expose the film), indirect X-ray photography (transmitted X-rays are converted into a bright optical image by an X-ray image multiplier tube, which is then photographed by a camera or recorded as a movie), and X-ray fluoroscopy (transmitted X-rays are converted into an optical image by a fluorescent substance, which is then observed as a moving image on an X-ray television). Recently, however, this is being replaced by a method in which the image is converted into a digital electrical signal by a flat panel detector (FPD) or similar, and then observed as a still image or moving image depending on the purpose. The most common clinical examination in medical facilities is the method of observing the area as a still image, which is called a chest radiography, etc., depending on the area to be examined. A simple radiography is easy to perform in a short time, is not dangerous, and is extremely important for finding out whether there are any lesions in the chest, abdomen, or bones throughout the body. Examinations that use contrast agents to differentiate the X-ray transparency of the internal organs being examined from the surrounding area are called contrast examinations or special examinations to distinguish them from simple radiography. Contrast agents include positive contrast agents that reduce the X-ray transparency of the area to be examined, and negative contrast agents that enhance it. The former include barium sulfate BaSO4 and water-soluble iodine preparations, and the latter include air and carbon dioxide (carbon dioxide gas). The method of administration of the contrast agent varies depending on the purpose of the examination. For the stomach and duodenum, it is administered orally, and for the large intestine, it is administered via the anus. In angiography, the contrast agent is often injected directly into the target blood vessel, while in spinal cord examinations it is injected into the subarachnoid space in the spinal canal. Important contrast examinations include gastrointestinal tract radiography (fluoroscopy), bronchography, cholecystography, bile duct and pancreatic duct radiography, angiography including the heart and great vessels, excretory urography, hysterosalpingography, and spinal cord radiography. In contrast examinations, the dynamics of organs, lesions, blood flow, etc. are observed under fluoroscopy, and still images are generally used for detailed examination. Ultrasound examinations are also used when puncturing a bile duct dilated by obstructive jaundice and injecting a contrast agent. In angiography including the heart and great vessels, a continuous imaging device is used to record the flow of the contrast agent through the blood vessels in a short period of time. Compared to plain radiography, these contrast examinations place a greater physical and economic burden on the subject and can be dangerous, so it is desirable for an examiner with experience to only perform necessary examinations. Tomography is a general term for methods to obtain images of a cross section inside a living body. In the past, plain radiography was used, but recently it has been replaced by computed tomography such as X-ray CT (computed tomography), MRI (magnetic resonance imaging), SPECT (single photon emission CT), and PET (positron emission tomography). X-ray CT in particular has become the main X-ray examination of the head in less than 10 years since its development in 1972. It is also effective in diagnosing brain tumors and strokes, but is particularly indispensable for detecting the presence or absence of intracranial hematomas after head trauma such as traffic accidents. Its usefulness has also been recognized in areas other than the head, and along with ultrasound examinations, it has become the mainstay of imaging diagnostics of the trunk as an examination that places less strain on the examinee. X-ray CT is often used in combination with a method in which a water-soluble iodine preparation, a positive contrast agent, is injected into a peripheral vein. [Kuni Otomo August 20, 2021] X-ray examination and radiation exposureAs a general rule, even small amounts of X-rays can affect the living body, so X-ray examinations should be performed to the minimum extent necessary, and when X-ray fluoroscopy is used, the fluoroscopy time should be kept as short as possible. The sensitivity of the living body to X-rays varies depending on the organ, and it is desirable to avoid exposing highly sensitive areas such as the gonads, bone marrow, crystalline lens, and thyroid gland to X-rays as long as it does not interfere with the examination. Fetuses are more sensitive than adults, and X-ray exposure during the organ formation period of the second to third month of pregnancy is said to be at risk of inducing serious aftereffects such as malformations. However, even in such cases, it is important to know that the radiation dose exposed in a normal X-ray examination is far less than the minimum dose that would have a negative effect on the fetus. Specifically, while a dose of 100 mGy or less is said to have no adverse effect on the fetus, the fetal dose from a single abdominal simple radiography is about 2 mGy, which is one-fiftieth of that. The traditional 10-day rule (lower abdominal X-ray examinations of women of childbearing age should be performed within 10 days of the start of menstruation when there is no possibility of pregnancy) is no longer considered necessary. However, the radiation dose from X-ray examinations is not strictly uniform, so if you have any concerns it is advisable to consult an expert. [Kuni Otomo August 20, 2021] "Introduction to Diagnostic Imaging Equipment, by Kimura Yuji (2007, Corona Publishing)" ▽ "New Lectures on Medical Radiation Science: Medical Imaging Equipment, 2nd Edition, edited by Okabe Tetsuo, Ogura Toshihiro, and Ishida Takayuki (2016, Ishiyaku Publishing)" ▽ "Radiation Equipment 2: Radiation Therapy Equipment and Nuclear Medicine Examination Equipment, revised new edition, by Saito Hidetoshi, Fukushi Masahiro, et al. (2017, Corona Publishing)" ▽ "Systematic Nursing Lectures, Supplementary Volume 11: Clinical Radiology, 10th Edition, by Ojiri Hiroya, et al. (2021, Igaku-Shoin)" ▽ "Radiation and Humans, by Tateno Yukio (Iwanami Shinsho)" [References] | | | | X | | | | | | | | | | | |Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
波長の短い電磁波の一種であるX線の透過性を利用して生体内の情報を得る検査方法。次の三つの過程から成り立つ。(1)X線を発生させ生体に照射する。(2)生体内でX線が減弱吸収される。(3)生体を透過したX線を可視像に変換する。 1895年ドイツの物理学者レントゲンがX線を発見した直後から医学への応用が試みられたが、X線発生装置、X線写真フィルム、蛍光物質の改良に加え、X線蛍光増倍管、X線テレビジョン、X線断層撮影装置、X線連続撮影装置、さらにフラットパネルディテクタflat panel detector(FPD)などの開発により、現在ではX線を使用する検査が全医療行為の2割に達するほど重要な地位を占めるに至っている。1972年イギリスのハウンズフィールドらによって開発され、10年足らずで現代医学の一部を塗り変えたとされるコンピュータ断層撮影装置を加え、臨床医学における検査としての重要性は将来さらに増大するものと考えられる。 [大友 邦 2021年8月20日] X線発生装置X線は、電子の運動エネルギーと位置エネルギーが電磁放射線へ変換することによって生ずる、電離能のある電磁放射線と定義される。したがってX線を発生させるには、電子の供給源である陰極と、電子を衝突させてそのエネルギーをX線へ変換する焦点(陽極)とを備えたX線管、および焦点に衝突させる電子を加速する発生器の二つの要素が必要である。 レントゲンによるX線管はガラス管内にガスを封入し、その電離で生じた陽イオンが陰極から電子を発生させ、これがガラス管壁に衝突してX線が発生する原理であった。この場合、ガラス管内のガス分圧を一定に保つことが困難であり、一定の強度のX線を発生させることができなかった。1913年にアメリカの実験物理学者クーリッジはタングステンフィラメントを陰極として使用し、これに電流を通すことにより電子を発生させる真空X線管を開発し、ガス分圧の問題が解決された。また、鮮明なX線像を得るには、焦点を小さくして短時間に多くのX線を発生できることが望ましい。このためには、焦点をX線の発生する方向に対して鋭角に傾けて見かけの大きさを小さくし、しかも毎秒1万回程度回転させて熱を放散し、短時間に大量のX線を発生できるようにした回転陽極が開発された。さらに電子を加速する発生器は、変圧器によって高電位差を生み、整流回路によって一定の電圧を保つ機能を備えており、発生器にかける電圧で発生するX線の波長を調節して生体内での透過性を変えることができる。なお、X線管に流す電流の強さと発生するX線の量は比例している。 [大友 邦 2021年8月20日] X線の生体内での減弱吸収X線検査に利用される150キロボルト以下のエネルギーのX線は、生体内では光電効果とコンプトン散乱(コンプトン効果)によって主として減弱吸収され、X線透過性のよい順に空気、脂肪、軟部組織および水と骨の四つに生体内の構成成分が分けられる。X線のエネルギーが低いときには、構成成分の原子番号の大小で光電効果による減弱吸収の差が大きく、X線のエネルギーが高くなると、光電効果よりコンプトン散乱による減弱吸収の割合が増加して構成成分ごとの減弱吸収の差は小さくなってくる。したがって、肋骨(ろっこつ)周辺の軟部組織の変化を見る必要のある胸部のX線像は、高エネルギーX線を使用して骨と軟部組織の間のコントラストを弱めたほうがよく、また軟部組織内の石灰化の有無を見るための乳房のX線像は、低エネルギーX線で軟部組織と石灰化部分のコントラストを大きくする必要がある。 [大友 邦 2021年8月20日] 透過X線の可視像への変換X線を人間の視覚で見ることはできないので、生体内を透過してきたX線の不均等な分布を可視像に変換する必要があり、X線のエネルギーを可視領域の光に変換できるタングステン酸カルシウムCaWO4、硫化亜鉛ZnSや硫化カドミウムCdSなどの無機結晶や、光効率のよい希土類、ヨウ化セシウムCsIなどの蛍光物質が利用されてきた。最近では、X線をアモルファス・セレン半導体などを用いて直接電気信号に変換する方式も開発応用されている。 X線を可視像に変換する方法は、従来は直接撮影(写真乳剤を塗ったフィルムを蛍光物質を含む増感紙で挟む。透過X線は増感紙で光子に変換されてフィルムを感光する)、X線間接撮影(透過X線をX線蛍光増倍管で明るい光学像に変換してカメラで撮影したり、映画として記録する)、X線透視(透過X線を蛍光物質で光学像に変換してX線テレビジョンで動画として観察する)に分類されていた。しかし最近では、フラットパネルディテクタ(FPD)などでデジタル電気信号に変換し、目的に応じて静止画像あるいは動画として観察する方法に置き換わりつつある。 医療施設で臨床検査としてもっとも一般的なのは、静止画像として観察する方法で、検査部位により胸部単純撮影などとよばれている。単純撮影は手技が容易で短時間ででき、危険もなく、胸腹部や全身の骨の病変の有無を知るためにきわめて重要な検査である。検査目的となる生体内の器官と周囲のX線透過性に差をつけるため造影剤を使用する検査は、単純撮影と区別して造影検査とか特殊検査とよばれる。造影剤には、検査目的となる部位のX線透過性を減弱する陽性造影剤と、増強する陰性造影剤があり、前者には硫酸バリウムBaSO4や水溶性ヨード製剤が含まれ、後者には空気や二酸化炭素(炭酸ガス)などがある。造影剤の投与方法は検査目的によって異なり、胃や十二指腸に対しては経口的に、大腸では経肛門(こうもん)的に投与する。血管造影では目的の血管内に直接造影剤が注入されることが多く、脊髄(せきずい)の検査では脊柱管内のくも膜下腔(かくう)に注入される。 造影検査として重要なものに消化管造影(透視)をはじめ、気管支造影、胆嚢(たんのう)造影、胆管および膵管(すいかん)造影、心大血管を含めた血管造影、排泄(はいせつ)性尿路造影、子宮卵管造影、脊髄造影などがある。造影検査では、透視下に臓器・病変・血流などの動態を観察し、詳細な検討には静止画像を併用するのが一般的である。閉塞(へいそく)性黄疸(おうだん)で拡張した胆管を穿刺(せんし)して造影剤を注入する際には、超音波検査を併用する。心大血管を含めた血管造影では造影剤が短時間に血管内を流れるようすを記録するために、連続撮影装置が使われている。これら造影検査は単純撮影と比較して被検者の肉体的経済的負担が大きく危険もあるので、必要な検査に限り検査に熟練した検者が行うことが望ましい。 断層撮影とは、生体内のある断面の画像を得る方法の総称であり、従来は単純撮影を応用する方法も行われていたが、最近では、X線CT(computed tomography)、MRI(magnetic resonance imaging)、SPECT(スペクト)(single photon emission CT)、PET(positron emission tomography)などのコンピュータ断層撮影に置き換わっている。とくにX線CTは、1972年に開発されて以来10年足らずで頭部のX線検査の中心的存在となった。脳腫瘍(しゅよう)や脳卒中の診断にも有効であるが、とくに交通事故などによる頭部外傷時の頭蓋(とうがい)内血腫の有無の検索には欠くことができない。頭部以外の領域でもその有用性は認められ、超音波検査とともに被検者の負担が少ない検査として躯幹(くかん)部の画像診断の主力となっている。X線CTにも、陽性造影剤である水溶性ヨード製剤を末梢(まっしょう)静脈から注入する方法が併用されることが多い。 [大友 邦 2021年8月20日] X線検査と被曝(ひばく)原則として、少量のX線でも生体に対して影響を及ぼす可能性があるので、必要最小限のX線検査を行い、X線透視を使用する場合、透視時間をなるべく少なくする必要がある。生体のX線に対する感受性は器官によって異なり、生殖腺(せん)、骨髄、水晶体、甲状腺など感受性の高い部位には検査に支障のない範囲でX線が曝射されないことが望ましい。成人に比べて胎児の感受性は高く、とくに妊娠2~3か月の器官形成期にX線被曝することは、形態異常など重篤な後遺症を誘発する危険があるとされている。しかしこのような場合でも通常のX線検査で被曝する線量は、胎児に悪影響を与える最低の線量よりはるかに少ないことを知っておく必要がある。具体的には100ミリグレイ以下では胎児への悪影響はないとされているのに対して、1回の腹部単純撮影での胎児線量はその50分の1にあたる2ミリグレイ程度である。従来の10日ルール(妊娠可能な女性に対する下腹部のX線検査は、妊娠の可能性のない月経開始後10日以内に行われるべきである)は、考慮する必要がないとされている。ただしX線検査による被曝線量は厳密には一律ではないため、不安がある場合には専門家に相談することが望まれる。 [大友 邦 2021年8月20日] 『木村雄治著『画像診断装置学入門』(2007・コロナ社)』▽『岡部哲夫・小倉敏裕・石田隆行編『新・医用放射線科学講座 診療画像機器学』第2版(2016・医歯薬出版)』▽『齋藤秀敏・福士政広他著『放射線機器学2 放射線治療機器・核医学検査機器』改訂新版(2017・コロナ社)』▽『尾尻博也他著『系統看護学講座 別巻11 臨床放射線医学』第10版(2021・医学書院)』▽『舘野之男著『放射線と人間』(岩波新書)』 [参照項目] | | | | | | | | | | | | | | | | | |出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
>>: X-ray technician - X-ray technician
During the Edo period, this was an institution est...
It refers to the sea area between Iki and Tsushim...
[ Nemipterus virgatus ]. Also known as threadfin b...
(1) The title of a Kyogen piece. Written as "...
… [Leone after that] Meanwhile, Sergio Leone, the...
… Civet Spirit Cat Incense [Imaizumi Tadaaki]. . ...
An industrial city in the northwest of North Hwan...
Year of death: 12 March 1661 (11 April 1661) Year ...
《 English breakfast 》⇒English breakfast Source: Ab...
A plain formed by a braided stream of water flowin...
A drug used to stimulate respiratory function in c...
An exclusive trade association formed by merchant...
A shrine located in Taipei City, Taiwan under Japa...
...However, the last temple to be established, Fu...
The name of a county established by Emperor Wu of ...