Mechanics

Japanese: 力学 - りきがく(英語表記)mechanics
Mechanics

It is a science that clarifies the laws of force and the resulting motion of objects when a force acts on them, and plays a fundamental role in elucidating the structure of nature. At the end of the 17th century, Newton established three laws: the law of inertia, the law of motion, and the law of action and reaction. In the 20th century, it was developed into the theory of relativity for objects that move at speeds close to the speed of light, and into quantum mechanics for microscopic particles such as atoms, and each system was established. Generally, mechanics that does not include the theory of relativity and quantum mechanics is called Newtonian mechanics, and classical mechanics includes the theory of relativity. Newtonian mechanics is also applied to rigid bodies, elastic bodies, and fluids, and each of these fields of mechanics has been formed. Statistical mechanics is applied to an assembly of a very large number of particles and statistically derives the overall properties of the assembly. In the following, we will limit ourselves to Newtonian mechanics.

During the Greek period, through civil engineering and architectural works, a quantitative understanding of the balance of forces of stationary objects related to levers, slopes, buoyancy, etc. was obtained to a considerable extent, and the field of mechanics known as statics was almost complete. As for dynamics, which deals with the movement of objects, only a superficial understanding was obtained from the experience of human and animal power, which had a lot of contact forces and friction at the time. Furthermore, apart from natural philosophy, the idea of ​​attributing the cause of the movement of celestial bodies to the natural world itself was not reached. Around the 16th century, with the development of production technology, the number of people working in technology and science increased, and in the 17th century, experimental and observational methods were developed. Copernicus advocated the heliocentric theory based on the mathematical simplicity and rationality of the descriptions of the movement of celestial bodies, Galileo directly observed the similarities between other planets and the Earth using a telescope, and Kepler discovered three laws of planetary movement, including that planets move in elliptical orbits with the Sun as their focus, based on the precise observational data left by Tycho Brahe. Galileo experimentally investigated the motion of objects and discovered the laws of fall and inertia. Building on these achievements, Newton unified the motion of terrestrial and celestial bodies, discovering the law of universal gravitation and formulating the system of mechanics into three laws. Mechanics was established as a modern science for the first time by using methods of systematic cognition such as hypothesis and demonstration, and analysis and synthesis. The correctness of mechanics was confirmed through numerous experiments and applications to production, and in the 19th century it was systematically organized as analytical mechanics. This also gave rise to the mechanical view of nature, which holds that all natural phenomena are determined by the laws of mechanics.

The law of inertia states that an object will remain at rest or in uniform linear motion in extreme situations where it is not affected by external influences. The law of inertia asserts the existence of a coordinate system in which the motion of an object is described, and this coordinate system is called an inertial system. When the inertial system is used as the base, it is force that causes the object to change from its current state. This change in motion is represented by acceleration a, so force is defined as the cause of acceleration. Since the acceleration caused by the same force varies depending on the object, each object is considered to have its own unique mass m, and if the force at this time is F, the law of motion is expressed by the quantitative relationship ma=F. m is inversely proportional to the acceleration for the same force, and indicates the magnitude of the object's inertia, so it is called inertial mass. When the initial conditions are given, the motion is determined from this relationship. The law of action and reaction states that the forces exerted on two objects act in the direction of the straight line connecting them, and that they are equal in magnitude and opposite in direction. The momentum and angular momentum of an entire assembly are conserved when no external forces are acting on it, which is a manifestation of the law of action and reaction.

[Shinobu Nagata]

[Reference] | Laws of motion

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

物体に力が働いたときどのような運動を行うか、運動の原因としての力とそれによる運動に関する法則を明らかにする学問で、自然の構造を解明するうえでもっとも基本的な役割をもつ。17世紀末ニュートンによって、慣性の法則、運動の法則、作用・反作用の法則の三法則として確立された。20世紀になって、光速度に近い速さで運動する物体については相対論として、また原子のような微視的粒子については量子力学として発展し、それぞれの体系ができあがっている。通常、相対論・量子力学を含めない力学をニュートン力学、相対論まで含めて古典力学とよぶ。ニュートン力学は剛体、弾性体、流体などにも適用され、それぞれの力学の分野が形成されている。また統計力学は、非常に多数の粒子の集合体に適用し統計的にその集合体の総括的な性質を導くものである。以下では、ニュートン力学に限る。

 ギリシア時代に、土木・建築工事などを通じて、てこ・斜面・浮力などに関する静止した物体の力のつり合いについては、定量的な認識がかなり得られ、静力学とよばれる力学の分野がほぼできあがった。物体の運動を扱う動力学については、当時の人力・畜力のような接触力と摩擦の多い運動の経験からでは表面的な認識しか得られなかった。また天体運行の動因を自然界そのものに帰す考えには、自然哲学は別として、到達できなかった。16世紀ころ、生産技術の発達とともに技術・科学に従事する人々の層も広がり、17世紀には実験・観測手段が発達した。コペルニクスは天体運行の記述の数学的簡潔さと合理性から地動説を唱え、ガリレイは望遠鏡により他の惑星の地球との類似性を直接観測し、ケプラーはティコ・ブラーエの残した精密な観測データから、惑星運動について、太陽を焦点とする楕円(だえん)軌道であることなど三つの法則を発見した。ガリレイは物体の運動を実験的に調べ、落下の法則や慣性の法則をみいだした。ニュートンはこれらの成果のうえに、地上の物体と天体の運動とを統一することによって、万有引力を発見するとともに、力学の体系を三つの法則に定式化した。仮説と実証、分析と総合など体系的認識の手法が用いられることにより、力学が近代科学として初めて成立した。力学は、多くの実験や生産への適用によってその正しさが確かめられ、19世紀には解析力学として体系的に整備された。またそれに伴い、自然の現象がすべて力学の法則に基づいて決定されているとする力学的自然観を生んだ。

 慣性の法則は、物体は外部からの影響が及ばないという極限の状況では、静止または等速直線運動の状態を続けるということを述べたものである。慣性の法則は、物体の運動がそのように記述される座標系が存在することを主張しており、その座標系を慣性系という。慣性系を基準にしたときに、物体のその状況からの変化を引き起こすものが力である。この運動の変化は加速度aによって表されるので、加速度を生じる原因として力を規定している。同じ力が働いても、生じる加速度が物体によって異なるので、各物体はそれぞれ固有の質量mをもつとし、このときの力をFとすると、運動の法則はma=Fという量的関係式で表される。mは同じ力に対して加速度と逆比例の関係にあり、物体の慣性の大小を示しているので慣性質量とよばれる。初期条件が与えられると、この関係式から運動が定まる。作用・反作用の法則は、2個の物体が相互に及ぼし合う力は両者を結ぶ直線方向に働き、それぞれ大きさは等しく向きは反対であることを内容としている。外部からの力が働かない集合体全体の運動量や角運動量は保存するが、これは作用・反作用の法則の現れである。

[永田 忍]

[参照項目] | 運動の法則

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Dynamical system - Rikigakukei (English spelling) dynamical sysytem

>>:  Lee Ki-young

Recommend

Karuna - Karuna

...In Ladakh, on religious festival days, a group...

Avila - Abira (English spelling) Ávila

The capital of Avila Province in the Castilla y L...

Parry, M.

... The key point is how the poetics of oral lite...

Navis (English spelling)

[raw]? [Died] 192 B.C. The last king of Sparta (re...

Comptoniphyllum

...This is thought to be related to the climate c...

Lobito - Lobito (English spelling)

A port city in western Angola, southwestern Afric...

The reign of Shotoku

This refers to the good governance of the two Sho...

Heteralocha acutirostris (English spelling) Heteralocha acutirostris

…Such differences between subspecies are unique. ...

Bateson, William

Born: August 8, 1861, Whitby, Yorkshire [Died] Feb...

Monachus

…A general term for mammals belonging to the genu...

Hibiscus militaris (English spelling)

…[Yoshishige Tachibana]. … *Some of the terminolo...

Izu stone

〘Noun〙 Andesite that is mined from the coast of Sh...

Cammann, GP (English spelling) CammannGP

...A single-tube stethoscope (monaural type) simi...

Kiyoshige Kasai

Date of birth and death unknown. A military comma...

behavioral engineering

…I have taken up the theme of social contingencie...