Indeterminate equation - indeterminate equation

Japanese: 不定方程式 - ふていほうていしき
Indeterminate equation - indeterminate equation

Finding integer solutions, or sometimes rational solutions, to algebraic equations with integer coefficients is called solving indeterminate or Diophantine equations. Diophantus, whose name is remembered here, was a Greek algebraist from around the 3rd century. His book "Arithmetik" includes research on indeterminate equations, but one of its distinctive features is that it deals only with rational solutions.

For example, ax+by=c (a, b, c are integers) (1)
x n + y n = z n (n is a natural number greater than or equal to 2) (2)
are typical indeterminate equations. (1) has a solution when the greatest common divisor of a and b divides c, and Euclidean algorithm is famous as a method for solving it. (2) becomes a Pythagorean triple when n=2, and was studied in ancient Babylonia around 2000 BC.

Fermat is considered the founder of modern number theory, and it is said that he realized from a description of Pythagorean triples in Diophantus's Arithmetic that (2) has no natural number solution when n ≥ 3.

In recent years, Alan Baker (1939- ) has brought about a revolution in indeterminate equations. For example, if f(x,y) is an irreducible homogeneous polynomial of degree 3 or higher and m is an integer other than 0, then the indeterminate equation f(x,y)=m
The famous theorem of A. Thue (1863-1922) states that f(x,y) has only a finite number of solutions, but Baker succeeded in placing a limit on the size of the solutions from the coefficients of f(x,y).

[Tsuneo Adachi]

[References] | Fermat's conjecture | Euclidean algorithm

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

整係数の代数方程式の整数解、ときには有理数解を求めることを、不定方程式またはディオファントス方程式を解くという。ここに名を残しているディオファントスは3世紀ごろのギリシアの代数学者である。彼の著書『算数論』には不定方程式の研究は含まれているが、すべて有理数解を扱っているのが一つの特徴である。

 たとえば
  ax+by=c (a,b,cは整数)(1)
  xn+yn=zn(nは2以上の自然数)(2)
は代表的な不定方程式である。(1)は、aとbの最大公約数がcを割り切るとき解をもつが、その解法としてユークリッドのアルゴリズムが有名である。(2)はn=2のときがピタゴラス数になり、紀元前2000年ころすでに古代バビロニアで研究されたものである。

 近代整数論の始祖とされるのはフェルマーであるが、フェルマーは、ディオファントスの『算数論』中のピタゴラス数に関する記述から、(2)がn≧3のとき自然数解をもたないことに気づいたといわれている。

 近年、ベーカーAlan Baker(1939― )によって不定方程式に一つの変革がもたらされた。たとえばf(x,y)を既約な三次以上の同次多項式とし、mを0でない整数とすると、不定方程式
  f(x,y)=m
は有限個の解しかもたない、というのが有名なトゥエA. Thue(1863―1922)の定理であるが、これに対してベーカーは、解の大きさの限界をf(x,y)の係数から与えることに成功したのである。

[足立恒雄]

[参照項目] | フェルマーの予想 | ユークリッドの互除法

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Pen stamp - Fudein

>>:  Houdini

Recommend

Dutch Winter Solstice - Holland Winter Solstice

…A banquet held during the Edo period to celebrat...

Town slave - Machiyakko

They are also called otokodate (men of style) or ...

anode

In a battery or electrolysis, a reaction occurs a...

Disc Gauge - Enban Gauge

...the end surface is either flat, cylindrical, o...

Kushasura Pawan - Kushasura Pawan

…the title of a governor of a province in the Per...

Daigashira-ryu

A school of Kusemai (dance). Kusemai began to chan...

Electrophilic Reagents - Electrophilic Reagents

They are also called electrophiles, electropositi...

Viennese temperament

A waltz for orchestra (1871) by Austrian composer ...

Cart (Plants) - Cart

Yemen's coffee, beloved under the name of Moc...

Princess Inoue - Princess Inoue

Year of death: 27 April 775 (30 May 775) Year of b...

Capsa

...It arose toward the end of the Pleistocene, fo...

An Su‐gil (English spelling)

1911‐77 Korean author. Born in Hamhung, South Hamg...

Water chestnut (Sagittaria trifolia var. sinensis)

A perennial plant of the Albataceae family. It is ...

Emperor Yongzheng

The fifth emperor of the Qing Dynasty of China (r...

Duke of Athens - Ateneko

…In times of military crisis, Florence received a...