Pierre de Fermat

Japanese: フェルマー - ふぇるまー(英語表記)Pierre de Fermat
Pierre de Fermat

French mathematician and politician. Born in Beaumont-de-Lomagne near Toulouse. His father was vice-consul of Toulouse and a leather merchant. Fermat studied law at the University of Toulouse, and in May 1631, he took his first steps as a politician by becoming a councillor in Toulouse. He then became a member of the Parliament of Toulouse in 1648, and spent the rest of his life there. The city was politically stable, and in his spare time from work he studied mathematics by reading old mathematics books, and he shared the results of his research in letters to leading contemporary mathematicians with whom he had acquaintances. He did not seem to like publishing his findings in the form of papers or books, and many of his highly acclaimed research works were published in a collection in 1679 after his death.

Fermat, independently of Descartes, showed that lines and conic curves can be given by linear and quadratic equations, respectively, by taking the line segment of length y according to the abscissa x of the curve y = f ( x ). This work provides the foundation for today's analytical geometry. Furthermore, although he did not consider taking limits as a method of finding a minimum,

He solved the problem to find the extreme value x 0 and found the maximum and minimum. This is now called the pseudo-equality method. Using this method, he was able to draw tangents to the curve. Fermat also exchanged letters with Pascal about how to distribute the bet money when a player stops gambling with dice halfway through. This dealt with a problem in probability theory, and Fermat is one of the founders of probability theory.

Fermat's work on number theory made him immortal. He read the Latin translation of Diophantus' Arithmetik and wrote down his results in it. If p is a prime number and a and p are mutually prime, then a p -1 -1 is divisible by p . A prime number of the form 4 n +1 can be written in a unique way as the sum of two squares, and a cube cannot be divided into two cubes, a fourth power into two fourth powers, and in general a power greater than two cannot be divided into two equal powers. The first two were provable, but the last one, which is a problem of finding an integer solution to x n + y n = z n , remained unsolved for a long time. This is called "Fermat's conjecture" or "Fermat's problem" (the proof of this problem was completed in 1994 by Andrew J. Wiles (1953- )). He often used the method of infinite descent, a variant of mathematical induction, to prove his results in number theory. Fermat conjectured that 2 2 n +1 is a prime number for any natural number, but when n = 5, the number becomes 641 × 6700417, which is not a prime number. This form of number 2 2 n +1 is called a Fermat number today. Contrary to Fermat's conjecture, it is now believed that Fermat numbers are not prime numbers when n ≧ 5.

[Kiyoshi Iseki]

[References] | Analytical Geometry | Probability | Diophantus | Fermat's Conjecture

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

フランスの数学者、政治家。トゥールーズの近く、ボーモン・ド・ロマーニュに生まれる。父は生地の副領事で皮革商であった。フェルマーはトゥールーズの大学で法律を学び、1631年5月トゥールーズの参事官となって政治家としての第一歩を踏み出した。その後1648年にはトゥールーズ議会の議員となり、生涯をその地で送った。ここは政治的に安定しており、職務の余暇に古い数学書を読みながら数学を研究し、その研究成果を、交際のある当代の代表的な数学者に手紙で知らせていた。自分の成果を論文や著作の形で公表することを好まなかったらしく、高く評価される彼の研究の多くは、その死後、1679年にまとめて発表された。

 フェルマーは、デカルトとは独立に、曲線y=f(x)を横座標xに応じて、長さyの線分をとりながら、直線や円錐(えんすい)曲線がそれぞれ一次、二次の方程式で与えられることを示した。この仕事は今日の解析幾何学の基礎を与えるものである。さらに極小を求める方法として、極限をとる考えはなかったが、

を解いて極値x0を求め、極大・極小を出した。これは今日pseudo-equality methodとよばれている。この方法を用いて、曲線に接線を引くことができた。またフェルマーはパスカルとの間で、さいころ賭博(とばく)を途中でやめたとき、賭(か)け金をどのように分配するかについて文通で論じた。これは確率論の問題を扱ったもので、フェルマーは確率論の創始者の一人でもある。

 フェルマーの名を不朽にしたのは、彼の数論の研究であった。古代ギリシアのディオファントスの『算数論』のラテン語訳書を読み自分の出した結果をこれに書き込んだ。pが素数で、apが互いに素であればap-1-1はpで割り切れる。4n+1の形の素数は二つの平方数の和として一通りに書ける、そして立方数を二つの立方数に、また四乗数を二つの四乗数に、一般に2より大きいべき数を二つの同じべき数に分けることはできない、などである。初めの二つは証明できるが、最後のものは、xn+yn=znの整数解を求める問題で、長い間、完全に解けていなかった。これは「フェルマーの予想」または「フェルマーの問題」とよばれている(この問題については、1994年にワイルズAndrew J. Wiles(1953― )によって証明が完成されている)。数論の結果の証明に、数学的帰納法の一つの変形である無限降下法をしばしば利用した。フェルマーは22n+1はどんな自然数についても素数であると予想したが、n=5のとき641×6700417となり、素数ではない。この形の数22n+1は今日フェルマー数とよばれている。フェルマーの予想とは違って、今日では、n≧5のときフェルマー数は素数ではないと考えられている。

[井関清志]

[参照項目] | 解析幾何学 | 確率 | ディオファントス | フェルマーの予想

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Fermat number - Fermat number

>>:  Ferdinand Verbiest

Recommend

Silverware - Gink

〘 noun 〙 Silver vessels and tools. ※Teikyo Bidan (...

Cherimoya (English spelling) Annona cherimola; cherimoya

An evergreen tall tree of the Annonaceae family. A...

Field | Hatake (English spelling) field

It can also be read as "hata". It refers...

Yakko - Yakko

[1] [noun] (a variation of "yatsuko". Us...

Complete life table

A life table. It is compiled by the Ministry of He...

Local Magistrate - Jibugyo

〘Noun〙① A job title in the Kamakura and Muromachi ...

The 48 harbours of Lake Kasumigaura

Self-governing organization of fishermen in Lake K...

Chilpancingo (English spelling)

Its official name is Chilpancingo de los Bravos. I...

Cereal cultivation

This refers to an extensive, large-scale agricultu...

Yoshimichi Inaba

⇒ Inaba Ittetsu Source: Kodansha Digital Japanese ...

Malla (English spelling)

An ancient tribe in North India. Around the 6th ce...

bias tire

…The carcass, also called the casing, is the stre...

Battle of the Mainland

Plans for the defense of the Japanese mainland at ...

Anṭūn Sa'āda (English spelling)

1912‐49 Lebanese politician. Born the son of a Gre...

Song Ren

A scholar from the early Ming Dynasty in China. H...