It has three meanings: mathematical term, physical term, and chemical term. [Tachibana Shunichi] MathematicsConsider a circle on a plane, with center O and radius k . Inversion with respect to this circle O refers to the correspondence that corresponds point P on the plane to point P' on a half line OP such that OP・OP'= k 2. Circle O is called the inversion circle, O is the center of inversion, and P' is the antipoint of P. Also, when P moves to draw a figure F, the figure F' drawn by P' is called the antiform of F. Inversion does not move any points on the circumference of the inversion circle. Also, the inside and outside of the inversion circle are swapped. With inversion, a circle that does not pass through point O becomes a circle that does not pass through O, a circle that passes through O becomes a straight line that does not pass through O, and a straight line that passes through O moves to itself. If we consider the straight line as a circle with an infinite radius, inversion can be called a circle-circle correspondence. Furthermore, inversion is a conformal correspondence (conformal mapping), and it leaves the anharmonic ratio of four points on the circumference unchanged ( ). When considering it in space, an inversion sphere is used instead of an inversion circle.[Tachibana Shunichi] PhysicsThe transformation of the position vector r i = ( x i , y i , z i ) of each point of the object A to -r i = ( -x i , -y i , -z i ) to A' is called active spatial inversion ( ). The velocity V i of each point of A also changes sign when it is transferred to A', but the angular momentum m i r i × V i and the angular velocity ω i do not change. A vector whose sign changes with spatial inversion is simply called a vector (or polar vector), and a quantity whose sign does not change is called a pseudovector (or axial vector). In contrast to active transformation, a transformation in mathematical expression that reverses the direction of all three rectangular coordinate axes is called passive spatial inversion. The distinction between polarity and axiality of vectors is also retained in this case. In terms of time, taking the physical phenomenon A as a movie and projecting it in reverse to transfer it to the new physical phenomenon A' is called active time inversion. In contrast to this, a transformation that changes the direction of the time axis in mathematical expression to the past is called passive time inversion. Performing both space inversion and time inversion is called space-time inversion. The formulas expressing the fundamental laws of physics do not change in form with passive space inversion or time inversion, except for small correction terms. Therefore, if phenomenon A occurs, the phenomenon obtained by applying active space inversion and time inversion to it also satisfies the laws of physics, and is in principle possible to realize. However, whether it is actually possible for humans to do so is another matter.[Hiroshi Ezawa] ChemicalIn chemistry, it is often used, especially in the field of organic stereochemistry, and there are two types: (1) inversion, in which the configuration around the carbon atom C is reversed, and (2) ring reversal, in which a ring such as a cyclohexane ring is inverted. (1) Inversion of the configuration of a carbon atom In a substitution reaction of an aliphatic compound (S N 2 reaction), as shown in , the reaction proceeds by a route in which reagent B (a nucleophile) attacks the central atom C from the outside and replaces the substituent A of compound (I) to produce compound (III). During this process, the configuration of the substituents (a, b, and c in ) around the C atom in the reaction center may be inverted. This inversion occurs when reagent B first approaches the central carbon atom C, forming a B...C bond and creating a pentacoordinate carbon transition state (II), and then the C...A bond breaks and A leaves in the opposite direction to the way B approached. As a result, the configuration around carbon atom C is inverted, as the other substituents a, b, and c do not change direction. This inversion is called the Walden inversion.Similar inversions can easily occur at room temperature. For example, in the nitrogen of ammonia and amines in , the same inversion of configuration as that of carbon occurs. However, this inversion does not involve the breaking of bonds, but rather a change in the orientation of the non-shared electron pair (":" in ), so it occurs quickly at room temperature.In compounds with many asymmetric carbon atoms, such as sugars, the reaction in which the configuration of just one asymmetric carbon atom is inverted is called epimerization. (2) Cyclohexane ring inversion Certain conformational changes are sometimes called "inversions." The most well-known example is the inversion of a cyclohexane ring, which is known to undergo an inversion movement between one chair form (I) in and the other chair form (II). This inversion occurs by rotation around the CC bond that forms the ring, and does not require the cleavage of the CC bond that constitutes the ring, so it occurs quickly at room temperature. This inversion changes the orientation of the hydrogen (H) and substituents (X) attached to the ring.The ring carbon atoms of a saturated nonplanar structure such as a cyclohexane ring have equatorial bonds that run in the plane of the ring and axial bonds that run perpendicular to the plane of the ring. In (I), the CX bond is equatorial, and in (II), the CX bond is axial. When the cyclohexane ring is inverted from (I) to (II), the CX bond changes from equatorial to axial, and the C-H bond changes from axial to equatorial.The bottom part of (III) shows the structural formula of D-glucose. The pyranose ring, which is the basic skeleton of sugars, has a pyranose ring structure in which one carbon atom of the cyclohexane ring is replaced with oxygen. Here too, ring inversion occurs, and there are known examples in which the orientation of the substituent has a significant effect on properties such as biological activity.[Mr. Hirota March 19, 2015] "Right and Left: The World of Symmetric and Asymmetric" by Chuji Tsuboi et al. (1981, Science Press) [Reference] | |©Shogakukan "> Inversion (Figure A) ©Shogakukan "> Active spatial inversion [Figure B] In (I) and (III), the orientation of a, b, and c is reversed . Inversion of Aliphatic Compounds (Figure C) ©Shogakukan "> Inversion of ammonia and amines (Fig. D) ©Shogakukan "> Cyclohexane inversion (Figure E) Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
数学用語、物理学用語、化学用語の三義がある。 [立花俊一] 数学平面上で一つの円を考え、中心をO、半径をkとする。この円Oに関する反転とは、平面上の点Pに対して半直線OP上でOP・OP′=k2となる点P′を対応させる対応をいう。円Oを反転円、Oを反転の中心、P′をPの反点という。また、Pが動いて一つの図形Fを描くとき、P′の描く図形F′をFの反形という。反転によって反転円の周上の各点は動かない。また反転円の内部と外部は入れ換わる。反転によって、点Oを通らない円はOを通らない円に、Oを通る円はOを通らない直線に、Oを通る直線は自分自身に移る。直線を半径無限大の円と考えれば、反転は円円対応ということができる。さらに、反転は共形対応(等角写像)であり、かつ円周上の4点の非調和比を不変にする( )。空間で考える場合は反転円のかわりに反転球を用いる。[立花俊一] 物理学対象Aのあらゆる点につき、それぞれの位置ベクトルri=(xi,yi,zi)を-ri=(-xi,-yi,-zi)に移してA′とする変換を能動的空間反転という( )。Aの各点の速度ViもA′に移ると符号を変えるが、角運動量miri×Viや角速度ωiは変わらない。空間反転で符号が変わるベクトルを単にベクトル(あるいは極性ベクトル)といい、符号が変わらない量を擬ベクトル(あるいは軸性ベクトル)とよぶ。能動的変換に対して、直角座標軸の向きを三軸とも逆転させる数式表現上の変換を受動的空間反転という。これに対してもベクトルの極性と軸性の区別は引き継がれる。時間についても、物理現象Aを映画にとり、それを逆回しに映写して得る新しい物理現象A′に移ることを能動的時間反転という。これに対して数式表現上で時間軸の向きを過去に向け変える変換を受動的時間反転という。空間反転と時間反転をともに行うことを時空の反転とよぶ。物理学の基本法則を表す数式は小さい補正項を除いて受動的空間反転、時間反転で形が変わらず、したがって、現象Aがおこれば、それに能動的空間反転、時間反転を施して得る現象も物理法則を満たし、原理的には実現可能である。しかし、それが人間の手で実際に可能かどうかは別の問題である。[江沢 洋] 化学化学では、とくに有機立体化学の分野でよく使われ、(1)炭素原子Cの周りの立体配置が逆になる反転(インバージョンinversion)と、(2)シクロヘキサン環などの環反転(リングリバーサルring reversal)の2種類がある。 (1)炭素原子の立体配置の反転 脂肪族化合物の置換反応(SN2反応)では、 にみるように、外部から試薬B(求核試薬)が中心原子Cを攻撃してきて、化合物(Ⅰ)の置換基Aと置き換わって化合物(Ⅲ)を生成する経路で進行する。この際に、反応中心のC原子の周りの置換基( のa、b、c)の配置に反転がおこることがある。この反転は、初めに試薬Bが中心炭素原子Cに接近してB…C結合が生成して5配位炭素遷移状態(Ⅱ)になり、次にC…A結合が切れて、Bが接近してきたのと逆の方向にAが去っていくときに、他の置換基a、b、cは向きを変えないでとどまるので、結果として炭素原子Cの周りの立体配置は反転することになる。この反転はワルデン反転とよばれている。これに似た反転が常温において容易におこる場合がある。たとえば、 のアンモニア、アミン類の窒素の周りでは炭素の場合と同じような立体配置の反転がおこる。しかし、この反転では結合の切断はなく非共有電子対( の「:」)の向きが変わるだけなので、常温で速やかに反転をおこしている。糖類などの不斉(ふせい)炭素原子を多数もつ化合物で、一つの不斉炭素原子だけの立体配置を反転させる反応をエピマー化(エピ化)という。 (2)シクロヘキサン環の反転 ある種の立体配座の変化を「反転」とよぶことがある。もっともよく知られている例は、シクロヘキサン環の反転で、 の一方のいす形(Ⅰ)と他のいす形(Ⅱ)との間で反転運動をしていることが知られている。この反転は、環を形成しているC-C結合の周りの回転によりおこり、環を構成するC-C結合の切断を必要としないので、常温で速やかにおこっている。この反転により環についている水素(H)や置換基(X)の向きが変わる。シクロヘキサン環のような飽和非平面構造の環炭素原子は、環の平面方向に伸びているエクアトリアル結合(赤道結合)と垂直方向に伸びているアキシアル結合(軸結合、極結合)をもっている。 の(Ⅰ)ではC-X結合はエクアトリアル、(Ⅱ)ではC-X結合はアキシアルである。シクロヘキサン環が(Ⅰ)から(Ⅱ)に反転すると、C-X結合はエクアトリアからアキシアルに、C-H結合はアキシアルからエクアトリアルに変わっている。(Ⅲ)の下段はD-グルコースの構造式である。糖類の基本骨格であるピラノース環はシクロヘキサン環の一つの炭素原子を酸素に置き換えたピラノース環構造をもっている。ここでも環の反転がおこっていて、置換基の向きが生物活性などの性質に大きな影響を及ぼす例が知られている。 [廣田 穰 2015年3月19日] 『坪井忠二他著『右と左――対称と非対称の世界』(1981・サイエンス社)』 [参照項目] | |©Shogakukan"> 反転〔図A〕 ©Shogakukan"> 能動的空間反転〔図B〕 (Ⅰ)と(Ⅲ)では、a、b、cの向きが反転している©Shogakukan"> 脂肪族化合物の反転〔図C〕 ©Shogakukan"> アンモニアやアミン類の反転〔図D〕 ©Shogakukan"> シクロヘキサンの反転〔図E〕 出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
<<: Banten (English spelling) banteng
>>: Hanten (half coat, kimono jacket) - Hanten
...Rojin-odori is a dance performed by dancers dr...
Wagner's opera. Its official title is "T...
Love is one of the most fundamental concepts in l...
…They grow in both marine and inland waters, and ...
...Etymologically, it is the same as hymn, but wh...
In the margins of Bachet's edition of the work...
A former town in Yame District, southern Fukuoka P...
Amagasaki Spinning, established in 1889, merged wi...
In general, bureaucrats are considered to be noble...
...In 1968, the Jiyugeki Theater merged with the ...
…It was discovered in 1921, and in 1961, full-sca...
[Born] Masakazu 2 (1112) [Died] 1170.1. Kaifeng, C...
A Chinese writer and politician from the Western ...
A table summarizing the celestial positions and ra...
This is the law that determines the degrees of fr...