A method of transmitting electricity using direct current in an electric power system. Three-phase AC transmission using three-phase AC is used in general electric power systems. Three-phase AC is, in principle, a combination of three AC circuits (single-phase AC), which are designed to be connected with three electric wires, and is more economical in terms of generating and transporting electricity than single-phase AC. In Japan, when the electric power system was first established in the 1880s, a 210-volt DC transmission system was used, but as the system expanded, it shifted to a 3,000-volt AC transmission system, which is more advantageous in terms of generating and transporting electricity. As the demand for electricity increased, 66 kilovolts were introduced in the late Meiji period, 154 kilovolts in the Taisho period, and 275 kilovolts in 1952 (Showa 27). Since then, power plants have been built in remote locations due to land availability and environmental constraints, and in order to efficiently transport the large amounts of electricity generated here to the centers of demand, there has been a shift to ultra-high voltage AC transmission of 187 kilovolts to 500 kilovolts. On the other hand, DC transmission has advantages that cannot be realized with AC transmission, so it has been partially studied and adopted in some systems. The main advantages of DC transmission are as follows: (1) The cost of constructing transmission lines is low. (2) It allows interconnection between systems with different frequencies. (3) It allows facilities to be strengthened without increasing short-circuit capacity. (4) It is suitable for long-distance, high-power transmission (it has an advantage in terms of stability because there is no need for synchronous operation of the sending end and receiving end). On the other hand, it has the following disadvantages: (1) The equipment that converts AC to DC or DC to AC is expensive. (2) It requires the development of large DC circuit breakers. (3) It requires measures against high-frequency interference. The history of DC transmission in Japan dates back to the launch of the electric power system in the 1880s, as mentioned above, but it was not until the 1940s that it was seriously considered, when high-voltage mercury rectifiers were developed, and then DC transmission test facilities were built mainly in Switzerland, Germany, Sweden, and other countries, and research was conducted with the aim of practical application. In 1954, the world's first commercial DC transmission (20,000 kilowatts, 100 kilovolts) began operation from the Swedish mainland to Gotland Island, and in 1961, the era of full-scale practical application of DC transmission began with the DC interconnection between the UK and France. After that, large-capacity, high-voltage DC transmission facilities began operation one after another in Japan for the purpose of long-distance, high-power transmission and undersea cable transmission. Furthermore, in terms of technology, AC/DC converters using thyristor elements have been put into practical use as an alternative to mercury rectifiers. The main ones are the Sakuma Frequency Converter Station, Shinshinano Frequency Converter Station, and Higashishimizu Converter Station for linking the 50 Hz and 60 Hz systems, as well as the Hokkaido-Honshu Interconnection (Kitahon Interconnection Line, between Hokkaido and Honshu) for linking systems via undersea cables, the Kii-Suido DC Interconnection (between Shikoku and Honshu), and the Minami Fukumitsu BTB (Back to Back, an abbreviation for back-to-back; there are two sets of AC/DC converters in the same substation and the DC transmission line is extremely short), which was established to control the flow of electricity. [Naoyuki Uchida] [Reference] | | | |Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
電力系統を直流を用いて送電する方式をいう。一般の電力系統では三相交流を用いた三相交流送電が用いられている。三相交流とは原理的には交流回路(単相交流)を三つ組み合わせたもので、これを3本の電線で接続するようくふうされており、単相交流に比較すると電力の発生、輸送面で経済的となる。日本においては、明治20年代の電力系統発足当時は210ボルトの直流送電方式が用いられたが、系統の拡大とともに電力の発生、輸送面から有利な3000ボルト交流送電方式へと移行した。電力需要の増大とともに明治後半には66キロボルトが、大正時代には154キロボルトが導入され、1952年(昭和27)に275キロボルトが導入された。このころから発電所が用地事情や環境面の制約などから遠隔地に建設され、ここで発生する大電力を需要の中心地まで効率的に輸送させるため、187キロ~500キロボルトの超高圧交流送電へと移行してきている。一方、直流送電方式は交流送電では実現できない利点を有していることから、部分的に検討が進められ、一部の系統において採用されてきた。直流送電のおもな利点は次のとおりである。(1)送電線路の建設費が安価なこと。(2)周波数の異なる系統間の連系ができること。(3)短絡容量を増大しないで設備強化ができること。(4)長距離・大電力送電に適していること(送電端と受電端の同期運転の必要性がないことから安定度面で有利となる)。一方、欠点としては次のとおりである。(1)交流から直流へ、または直流から交流へ変換する装置が高価であること。(2)大型の直流遮断器の開発が必要なこと。(3)高周波障害対策が必要なこと。 直流送電の歴史は、日本では前述のように明治20年代の電力系統発足時にさかのぼるが、本格的に検討されたのは1940年代に高電圧水銀整流器が開発され、その後スイス、ドイツ、スウェーデンなどを中心に直流送電の試験設備がつくられ、実用化を目ざした研究が進められてからである。1954年に世界で初めて商業ベースとしてスウェーデン本土からゴトランド島への直流送電(2万キロワット、100キロボルト)が運転を開始し、1961年の英仏直流連系によって本格的な直流送電の実用化時代となった。その後日本でも長距離・大電力送電や海底ケーブル送電などを目的とした大容量・高電圧の直流送電設備が続々と運転を開始した。さらに技術的にも水銀整流器にかわるものとしてサイリスタ素子を用いた交直変換装置が実用化されている。おもなものとしては、50ヘルツ系と60ヘルツ系を連系するための佐久間(さくま)周波数変換所、新信濃(しんしなの)周波数変換所、東清水(ひがししみず)変換所、および海底ケーブルで連系するための北海道・本州間連系(北本連系線。北海道と本州間)、紀伊(きい)水道直流連系(四国と本州間)、電力の流れを制御するために設けられた南福光(みなみふくみつ)BTB(Back to Back=背中合わせの略。同一変電所内に2組の交直変換装置があり直流送電線が極端に短い)がある。 [内田直之] [参照項目] | | | |出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
Basidiomycete, Agaricales, Family Zanthaceae. Also...
… According to Kabbalistic mysticism, the Western...
...In the 18th century, the advent of the chronom...
…A Czech writer and journalist. A genius who left...
(1) A nationalist political party in the mid-Meij...
…After the Edo Shogunate was established, in 1617...
The following year, he served as a volunteer army...
…the central city of the Palestinian region. It i...
…The leading role in the founding of the State of...
…In April 1802, Mabuchi gave a lecture on the Hya...
The household registration system was implemented ...
A building over 100m tall. In 1963, the Building S...
An uninhabited island in Yuasa Bay, Yuasa Town, Ar...
This was an incident that intensified the Freedom...
A book about fishing methods and food manufacturi...