Ellipse - daen (English spelling) ellipse

Japanese: 楕円 - だえん(英語表記)ellipse
Ellipse - daen (English spelling) ellipse

A type of conic section. It is also called an ellipse. The locus of points whose sum of distances from two fixed points F and F' is constant is an ellipse, and F and F' are called its foci ( Figure A ). In a Cartesian coordinate system with the line passing through F and F' as the x-axis and the perpendicular bisector of the line segment FF' as the y-axis, the ellipse is

It is expressed by an equation in the form. When F and F' are the same, it becomes a circle, so a circle is a type of ellipse. O is the center of the ellipse, and the chord that passes through the center is called the diameter. In particular , AA' and BB' in Figure A are respectively the major and minor axes, and together these are called the principal axes. An ellipse has the property that light emitted from one focus is reflected by the ellipse and all gathered at the other focus. The circle where x2 + y2 = a2 is called the auxiliary circle of the ellipse (*) ( Figure B ).

x = a cos, y = b sin
Point P( x , y ) where x ' = a cos, y ' = a sin is on an ellipse, and point Q( x ', y ') where x' = a cos, y' = a sin is on an auxiliary circle, so the ellipse is the auxiliary circle contracted along the y- axis in the ratio b : a . The angle made by the x- axis and QO is called the eccentric angle of P. The locus of the midpoints of chords parallel to one diameter g1 is also another diameter g2 . In this case, the locus of the midpoints of chords parallel to g2 is g1 , and g1 and g2 are called conjugate diameters ( Figure C ).

An ellipse can also be said to be the locus of points whose ratio of distance from a fixed line to a fixed point is a constant value less than 1. Figure D shows pairs of such fixed lines and fixed points l , F and l ', F'. l and l ' are called directrixes. The constant value e is called the eccentricity of the ellipse,

A set of quadratic curves with parameter λ

If λ<β, it represents an ellipse, and if β<λ<α, it represents a hyperbola, all of which have the same focus [=(α-β), 0]. In this case, there is one ellipse and one hyperbola in this group of quadratic curves that pass through any point P on the plane other than the origin, and they are perpendicular to each other at P ( Figure E ). Ellipses and hyperbolae that share a common focus in this way are said to be confocal.

Ellipses were academically studied as one of the conic sections by Apollonius and others more than 200 years ago. It is interesting that it was not until nearly 2,000 years later that they gained practical meaning through Kepler's law that states that "planets move in elliptical orbits with the sun at one focus."

[Tachibana Shunichi]

Ellipse (Figure A)
The locus of points whose sum of distances from two fixed points F and F' is a constant is an ellipse, and F and F' are called its foci .

Ellipse (Figure A)

Ellipse (Figure B)
The circle where x + y = a is called the auxiliary circle of the ellipse .

Ellipse (Figure B)

Ellipse (Figure C)
The locus of the midpoints of the parallel strings to a diameter is also a diameter. In this case, the locus of the midpoints of the parallel strings is called a diameter, and the and are called conjugate diameters .

Ellipse (Figure C)

Ellipse (Figure D)
The locus of points where the ratio of the distance from a fixed point to a fixed line is a constant ©Shogakukan ">

Ellipse (Figure D)

Ellipse (Figure E)
Ellipses and hyperbolas that share a common focus are called confocal .

Ellipse (Figure E)


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

円錐曲線(えんすいきょくせん)の一つ。長円ともいう。2定点F、F′からの距離の和が一定である点の軌跡が楕円であり、F、F′をその焦点という(図A)。F、F′を通る直線をx軸とし、線分FF′の垂直二等分線をy軸とする直交座標系をとれば、楕円は

の形の方程式で表される。F、F′が一致すれば円となるので、円は楕円の一種である。Oを楕円の中心、中心を通る弦を直径という。とくに図AのAA′、BB′をそれぞれ長軸、短軸、これらをあわせて主軸という。一方の焦点から出た光は楕円で反射してすべて他方の焦点に集まる、という性質をもつ。x2y2a2なる円を楕円(*)の補助円という(図B)。

  xacos, ybsin
なる点P(x, y)は楕円上にあり、x′=acos, y′=asinなる点Q(x′, y′)は補助円上にあるから、楕円は補助円をy軸方向にbaの比で収縮したものである。x軸とQOによってつくられる角をPの離心角という。一つの直径g1に平行な弦の中点の軌跡はまた一つの直径g2となる。このときg2に平行な弦の中点の軌跡はg1で、g1とg2とは互いに共役な直径といわれる(図C)。

 楕円はまた、定直線と定点からの距離の比が1より小さい一定値である点の軌跡、ともいうことができる。図Dにそのような定直線と定点の組l、Fとl′、F′とを書いてある。ll′を準線という。一定値eは楕円の離心率といわれ、

で与えられる。λを径数(パラメーター)とする二次曲線群

は、λ<βならば楕円を、β<λ<αならば双曲線を表し、すべて同じ焦点〔=(α-β), 0〕をもつ。このとき、平面上の原点以外の任意の点Pを通って、この二次曲線群の一つの楕円と一つの双曲線があり、それらはPで互いに直交する(図E)。このように焦点を共有する楕円、双曲線は共焦点であるという。

 楕円は円錐曲線の一つとして紀元前200年以上前にアポロニウスらによって学問的に研究された。それが2000年近くもたってから「惑星は太陽を一焦点とする楕円軌道を描く」というケプラーの法則によって実用上の意味をもつことになったのは興味深い。

[立花俊一]

楕円〔図A〕
2定点F、F′からの距離の和が一定である点の軌跡が楕円であり、F、F′をその焦点という©Shogakukan">

楕円〔図A〕

楕円〔図B〕
x+y=aなる円を楕円の補助円という©Shogakukan">

楕円〔図B〕

楕円〔図C〕
一つの直径に平行な弦の中点の軌跡はまた一つの直径となる。このときに平行な弦の中点の軌跡はで、ととは互いに共役な直径といわれる©Shogakukan">

楕円〔図C〕

楕円〔図D〕
定直線と定点からの距離の比が一定値である点の軌跡©Shogakukan">

楕円〔図D〕

楕円〔図E〕
焦点を共有する楕円、双曲線は共焦点であるという©Shogakukan">

楕円〔図E〕


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Elliptic equation - elliptic equation

>>:  Salivary gland

Bow
Bow
Blog    

Recommend

Omiya Dance

A folk performing art handed down in the Hiruzen r...

Hida Mountains

Located in the northern part of the mountainous re...

Lakedion

…In Germany, he is associated with a figure named...

《Enoken's Hard Work Tactics》 - Enoken's Hard Work Tactics

...However, the extant versions of both works are...

Breeding stock - shuchiku

This refers to livestock raised for breeding purp...

Rockery - Rock

…This stone is found in Lake Taihu in Jiangsu Pro...

Categories

A classification of the quality of twisted pair ca...

HTML - High-Tech Millionaire

It is a standard for creating web pages. It is als...

Clark, J.

...is a sport in which the engines and bodies of ...

Glashow, SL (English name) GlashowSL

...A unified theory of electromagnetic interactio...

Magic Lantern

A device that shines a strong light on a landscap...

Mount Goryu

A mountain in the Hida Mountain Range, on the bord...

White kerria - White kerria

A deciduous shrub of the Rosaceae family (APG cla...

Anchusa capensis (English spelling) Anchusacapensis

… [Eiichi Asayama]. … *Some of the terms mentione...

Azar, P.

… [Development of the French Positivism] In the 2...