Projection

Japanese: 射影 - しゃえい(英語表記)projection
Projection
Mathematical term. (1) In projective geometry, when two figures correspond to each other through perspective correspondence with a point O as the center, these two figures are said to be a projection or section of the other. In the case of plane figures, drawing straight lines connecting each point on figure F to a point O outside F is called projecting F from O, and finding the intersections of each line when F is projected from O with a line l that does not pass through O is called cutting F at l . In the case of space figures, drawing straight lines connecting each point on figure F to a point O outside F is called projecting F from O, and finding the intersections of each line when F is projected from O with a plane π that does not pass through O is called cutting F at π. In either case, the set of intersections found by cutting generally forms a new figure F ' that is different from F. This is sometimes called the image of F. Finding F ' from F in this way is simply called projecting F onto l or π. (2) In Euclidean space, or more generally in Hilbert space, it is a mapping that associates the foot of a perpendicular line from a point in the space to a subspace. To distinguish between the two, it is called an orthogonal projection. Projections can also be considered for general convex sets, not just subspaces. The projection from point P to convex set A is the point that minimizes the distance d (P, Q) for Q∈A . (3) Generalizing the case of (2), when there are sets A and B , a mapping that associates a or b with a point ( a , b ) in the intersection set A × B is called a projection. Furthermore, for a fiber space C over B , a mapping from C to the base B is called a projection. From this structure, a surjection from set C to set B is also generally called a projection.

Source: Encyclopaedia Britannica Concise Encyclopedia About Encyclopaedia Britannica Concise Encyclopedia Information

Japanese:
数学用語。 (1) 射影幾何学では,2つの図形が,1点Oを中心とする配景対応によって,互いに対応しているとき,これらの2つの図形は,一方が他方の射影または切断になっているという。平面図形の場合には,図形 F 上の各点と F 外の1点Oとを結ぶ直線を引くことを,F をOから射影するといい,また F をOから射影した場合の各直線とOを通らない1つの直線 l との交点を求めることを,Fl で切断するという。空間図形の場合には,図形 F 上の各点と F 外の1点Oを結んで,直線を引くことを,F をOから射影するといい,また F をOから射影した場合の各直線とOを通らない1つの平面πとの交点を求めることを,F を π で切断するという。切断によって求められた交点の全体は,いずれの場合も,一般に F とは異なった新しい図形 F' を形成する。これを F の画像ということがある。このようにして F から F' を求めることを,単に,Fl または π に射影するという。 (2) ユークリッド空間,またはもっと一般にヒルベルト空間では,その空間の点から部分空間への垂線の足を対応させる写像をいう。特に区別するときは,正射影または直交射影 orthogonal projectionという。部分空間に対してでなく,一般の凸集合に対しても,射影を考えることもある。点Pから凸集合 A への射影は,Q∈A についての距離 d(P,Q) を最小にする点になる。 (3) (2) の場合を一般にして,集合 AB があるとき,積集合 A×B の点 (ab) に a もしくは b を対応させる写像を射影という。さらに,B の上のファイバー空間 C について,C から底の B への写像を射影という。この構造から,一般に,集合 C から集合 B への全射のことを,射影ということもある。

出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報

<<:  Projective geometry

>>:  Abschattung (Germany)

Recommend

Gidran

…(3) Anglo-Arab: A hybrid of the Arabian and Thor...

Okroshka

...Today, except in special cases, there is littl...

Sanbu Kanasho - Sanbu Kanasho

Written by Shoken (Koua). Collectively consisting...

Awa [town] - Awa

A former town in Awa District, northern Tokushima ...

History of the Incas

…[Souden Hideto]. … *Some of the terminology that...

Russkaya Pravda (English spelling)

There are two known names for Russian legal codes....

Garamantes

…The Berbers are their direct descendants. In Her...

Rubellite

...In addition, even in single colors, there are ...

Ellen Key

→Kay Source : Heibonsha Encyclopedia About MyPedia...

shocker

…A general term for films that are made with the ...

General sense - Ippankankaku

〘noun〙 A sense that has receptors inside the body....

Electron theory (in organic chemistry)

A theory that attempts to understand the properti...

Iranian Revolution

This revolution took place on February 11, 1979, ...

Niimiso - Niiminosho

One of the manors under Toji Temple. It occupied ...

《Storm of Cheers》 - Tempest of Cheers

...At her mother's urging, she started taking...