The term refers to a geological aggregate in the earth's crust where useful elements, minerals, rocks, and earth resources such as oil and natural gas are particularly concentrated. Earth resources are used in our daily lives and are essential for human life and prosperity. There are various types of earth resources, such as metal element resources, which are useful elements contained in minerals such as gold, silver, copper, lead, zinc, tin, tungsten, and iron; mineral resources, which are useful minerals such as clay and zeolite (also called industrial mineral resources or non-metallic resources); soil and stone resources, such as granite and limestone; and energy resources, such as coal, oil, and natural gas. However, it is not generally known where these earth resources exist in the earth's crust, in what state, and when they are extracted or mined. All earth resource materials are contained in various rocks in the earth's crust. Generally, their average concentration is expressed as Clarke number. However, their average concentration in the earth's crust is extremely low, and it is not economically viable to recover these useful resources from ordinary rocks. For these resources to be economically recoverable, useful elements, minerals, and energy resources must be concentrated in the earth's crust at a considerable concentration. The place where these are concentrated is a deposit, and a deposit can be defined as a part of an abnormally concentrated body. In this sense, a deposit itself can be called a special geological body. The degree of concentration of useful substances (concentration) that can be called a deposit is determined by the ratio of the element's abundance in the earth's crust, the social demand, the country's degree of economic development, infrastructure, and other socio-economic and technological factors. The area of a geological body that has been recognized as a deposit may be narrowed or expanded depending on the economic evaluation at the time. In addition, technological innovation may result in the emergence of a deposit that targets new resource materials. [Naoya Imai and Hiroaki Kaneda] Ore, host rock, gangueAn ore deposit consists of ores and host rocks. Ores are geological aggregates that contain useful elements and minerals, while host rocks are rocks distributed around and near the ores. Ores consist of ore minerals that contain useful elements and minerals, and unnecessary minerals called gangue minerals that are formed during the deposit formation process. These gangue minerals may also contain the host rock. The value of ores is expressed as the content of useful elements and minerals in weight percent or grams per ton, and is called the ore deposit grade. The minimum grade of an ore deposit that can be extracted is called the cut-off grade. The minimum extraction grade is determined by a variety of factors, including the economic state of the country in question, the global economic state, technological conditions, and infrastructure. In addition to deposits that are the result of concentrations of metallic minerals and other elements, there are also deposits that are the result of mining solid rock materials such as clay, pottery stone, limestone, and granite, as well as deposits where hydrocarbons have accumulated and been stored in the strata as fluids, such as oil and natural gas deposits. Even today, deposits containing large amounts of metal sulfides are deposited in the depressions of the Red Sea and ocean ridges between the African continent and the Arabian Peninsula, and this phenomenon is also observed in geothermal areas on land. In addition, there is a known example of a modern-day melt-type sulfur deposit formed by intermittent outflow of sulfur molten bodies from sulfur vents in the volcanic area of Hokkaido, Japan (Shiretoko Peninsula). In addition, in hydrothermal vent zones near the mid-ocean ridge, fluids called black smokers and white smokers are emerging from vents, forming minerals mainly composed of iron sulfides and minerals mainly composed of silicates and carbonates, respectively. However, the majority of mineral and energy resource deposits are historical products formed by geological processes such as magma action, hydrothermal action, sedimentation, and metamorphism over the long history of the Earth, which spans 4.6 billion years. The definition of a mineral deposit or ore is based on the basic concept of a special crustal material (special rock) from the geoscientific point of view, and also on the premise that it can be exploited and used profitably. Therefore, these definitions are influenced by variables due to social factors in human society. For example, economic factors such as fluctuations in the prices of metals and crude oil, the location of the deposit, and developments in development technology and ore processing technology are examples of these. There are deposits that were not recognized as mineral deposits at all in the past but have now become important, and conversely, there are deposits that were once actively developed but are now completely ignored, and there are deposits of high-quality ores that have been left undeveloped due to unsolved technical problems. An example of a deposit whose economic value has increased in recent years is the porphyry copper deposit, which currently plays an important role as a source of copper supply for the world. Porphyry copper deposits are large-scale, but the copper grade of the ore is low, so they are called "giant low-grade deposits." These deposits were not mined at all in the 19th century, but in the 20th century, development began from the relatively high-grade deposits or their high-grade parts, and since the 1950s, low-grade parts with a copper content of 0.5 to 1.0% have also been mined as ore. This is because the deposits are huge, and because the natural conditions of the deposits being located relatively shallow underground have made it possible to carry out large-scale open-cut mining using large heavy machinery, making it possible to make a sufficient profit. [Naoya Imai and Hiroaki Kaneda] Classification of mineral depositsMineral deposits are broadly classified into metallic deposits, non-metallic deposits, and fuel deposits based on the purpose of human society and the use in industry. Metal deposits are further divided into gold, silver, copper, lead, zinc, and tin, and non-metallic deposits into sulfur, limestone, dolomite, quartz, and fluorite based on economic and legal reasons (for example, the classification of mineral types by the Mining Act). Fuel deposits are further divided into organic fuels and nuclear fuels, the former into coal, petroleum, and combustible gas, and the latter into uranium and thorium. These classifications are for convenience, and often cause problems. For example, dolomite is used in the iron and steel and glass industries, and dolomite deposits are usually classified as non-metallic deposits, but metallic magnesium can also be extracted from them, in which case they are classified as metallic deposits. Uranium deposits, the main source of nuclear fuel deposits, are sometimes classified as metallic deposits. Another classification of mineral deposits is based on their origin. That is, based on the relationship of geological activity between the ore and the surrounding rocks, they can be broadly divided into four types: magmatic deposits, hydrothermal deposits, sedimentary deposits, and metamorphic deposits. These are further subdivided as described below. Mineral deposits are also often broadly divided into syngeneic and epigenetic deposits based on their genetic relationship with the surrounding rocks (host rock). Syngeneic deposits are deposits that formed at the same time as the surrounding rocks were formed, and epigenetic deposits are deposits that formed after the formation of the surrounding rocks. Since the German mining scientist Agricola first classified mineral deposits in the mid-16th century, many researchers have attempted to classify them according to their origin, but the classifications have varied considerably from one researcher to another. This is due to differences in each researcher's perception of the occurrence of mineral deposits, their understanding and interpretation of geological phenomena, and their emphasis on the conditions and factors of mineral deposit formation. In other words, the classification by American mineral deposit scientist Lindgren was based on the depth of mineral deposit formation, while the classification by Swiss geologist and geochemist Nigri was based on the two series of volcanic and plutonic igneous activity by British petrologist W. Q. Kennedy (1903-1979). German mineral deposit scientist H. Schneiderhöhn (1887-1962) classified mineral deposits according to the characteristics of mineral paragenesis in ores of the same origin, based on the history of the structural development of the earth's crust. [Naoya Imai and Hiroaki Kaneda] Magmatic depositsMagma (molten silicate material) generated in the upper mantle or lower crust rises and intrudes into the upper crust, where it cools and solidifies. During the cooling process, various minerals crystallize, and fluid substances such as water and carbon dioxide gas become concentrated in the magmatic residue. Magmatic deposits are deposits formed by geological processes related to such magmatic activity (igneous activity), and are further divided into (1) orthomagmatic deposits (including carbonatite deposits), (2) pegmatite deposits, and (3) pneumatic deposits. (1) Orthomagmatic deposits These deposits are formed by the separation of sulfide magma and silicate magma due to immiscibility during the cooling process of magma, or by the deposition and concentration of crystals due to magma crystallization differentiation. Examples of the former deposits include the nickel-copper deposit in Sudbury, Canada, and examples of the latter include the chromite deposit in the Great Dyke in Zambia and the platinum deposit in Parabolic, South Africa. Kimberlites that contain diamonds and have a pipe-like shape show a characteristic geological structure called diapir, in which "magma" extremely rich in crystals and gas reaches the surface from a depth of 100 to 200 kilometers through the upper mantle and crust. These are also classified as orthomagmatic deposits. Carbonatites associated with alkaline rock complexes are thought to have crystallized from a molten body mainly composed of carbonates, and carbonatite deposits containing niobium and rare earth elements are also classified as orthomagmatic deposits. (2) Pegmatite deposits As the magma solidifies and the amount of crystallized minerals increases, the volatile components contained in the magma, mainly water and carbon dioxide, gradually become concentrated in the remaining magma (residual), making it more fluid and increasing its pressure. This period is called the pegmatite stage, and rare elements become concentrated in the residual magma as volatile compounds. Pegmatite deposits are formed when this highly fluid residual penetrates into cracks relatively deep in the crust and gradually solidifies. (3) Pneumatic deposits When the solidification of magma in pegmatite deposits progresses further and the crystallization of silicate minerals is completed, the amount of volatile components reaches its maximum, and the pressure of the high-temperature fluid that has dissolved useful metals reaches its maximum. The high-temperature fluid thus produced penetrates into the top of the granite or into cracks in the earth's crust, forming pneumatic deposits. [Naoya Imai and Hiroaki Kaneda] Hydrothermal depositsWhen the temperature drops due to the mixing of meteoric water after the pneumatic stage, when the (final) high-temperature fluid of the magma residue is active, the fluid becomes hydrothermal fluid (solution) with various metallic and nonmetallic elements dissolved in it. This stage is called the hydrothermal stage, and the deposits formed during this stage are called hydrothermal deposits. They are also called hydrothermal deposits or hydrothermal deposits. Through the study of stable isotope geochemistry, knowledge of stable isotopes of hydrogen, oxygen, carbon, and sulfur has been widely adopted in mineral deposit research. As a result, the origin of hydrothermal fluids involved in the formation of mineral deposits has been debated, and it has gradually become clear that hydrothermal fluids are not only magma water, but also surface water that has infiltrated deep underground, and fossil water trapped in the strata that has been heated by magma activity. Stable isotope research also supports the idea that not all of the elements that form the ores come from magma. In other words, it is now believed that as hot water generated inside the earth's crust rises, it selectively leaches and absorbs mineral components from the surrounding rocks, and that the minerals precipitate from this hot water, and so the interaction between the fluid and rocks in hydrothermal systems has come to be emphasized. In addition, the mixing of groundwater into hot water causes a drop in the temperature of the hot water, which leads to the precipitation and accumulation of various minerals from the hot water with its high elemental concentrations, and hydrothermal deposits are formed by the accompanying useful elements and minerals. Hot water containing the constituent elements of a deposit is also called mineralizing fluid or ore solution. Hot water generated deep in the earth's crust rises toward the surface due to its high temperature and low density. During the upward movement, physical and chemical factors such as a drop in temperature and pressure cause mineral deposits to form. Various types of mineral deposits are formed depending on the geological structure and type of geology through which the hot water passes. They can be further classified into (1) vein-type deposits, (2) skarn-type deposits, (3) porphyry-type deposits, and (4) volcanic fumarolic deposits. (1) Vein-type deposits Vein-type deposits are formed when hydrothermal fluids or mineralizing fluids penetrate into cracks in the earth's crust and cause the precipitation and accumulation of minerals. They are further classified into hydrothermal, mesothermal, and epithermal vein-type deposits according to the depth of formation. The three types of vein deposits have the following characteristics regarding the minerals they produce. Hydrothermal deposits produce relatively large amounts of tin, tungsten, and gold, mesothermal deposits produce copper, lead, zinc, and gold, and epithermal deposits produce gold, silver, mercury, antimony, and sulfur. There are also vein deposits at shallow depths that have the characteristics of all the minerals produced, from epithermal to hydrothermal veins. This phenomenon is called telescoping, and they are classified as xenothermal deposits. (2) Skarn deposits Skarn deposits are formed when mineralizing fluids come into contact with carbonate minerals, especially limestone. This type of deposit is also called a contact metasomatic deposit. Minerals containing calcium and iron, such as clinopyroxene (diopside, hedgenite) and garnet, are formed by the reaction of mineralizing fluids with carbonate minerals. These minerals are called skarn minerals. Skarn deposits contain a large amount of skarn minerals. The physicochemical properties of the fluid change as skarn minerals precipitate from the mineralizing fluid. As a result of this physicochemical change, useful minerals precipitate from the mineralizing fluid, forming an ore deposit. In general, the minerals produced from skarn deposits include copper, lead, zinc, tungsten, and iron. The Mississippi Valley type lead-zinc deposit is a deposit that has similar formation conditions to skarn deposits. This is a hydrothermal deposit with limestone as the host rock, but no skarn minerals are present. This type of deposit is called a telethermal deposit, and the heat source for the hydrothermal generation is believed to be located far away from the deposit. The mineralization fluid of the Mississippi Valley type deposit is characterized by an extremely high sodium chloride (NaCl) concentration of over 10%. (3) Porphyry deposits The top of the solidified rock body is a tension field due to repeated magma intrusions and solidification caused by active magma activity, and numerous cracks develop. The top of this igneous rock body is an ideal place for the formation of mineral deposits, and metal components fill the cracks to form large-scale deposits. The top of an igneous rock body where magma activity is active is the site of the formation of porphyry-type deposits, especially porphyry copper deposits, and although the grade is low, the size and amount of the deposits are enormous. Porphyry copper deposits, which were formed from the Cretaceous period to the Paleo-Neogene period of the Mesozoic era, are characterized by their distribution over an area of about 100 to 200 kilometers on the continental side of the subduction zone of the oceanic plate, and this distribution characteristic is particularly noticeable in the Pacific Circumference region. (4) Volcanic fumarolic deposits When magma erupts on the earth's surface or on the seafloor, high-temperature fluids (fumaroles) containing various useful metals and nonmetals are released into land or ocean waters. Volcanic fumarolic deposits are formed by such volcanic fumarolic deposits, and are divided into two types: terrestrial volcanic fumarolic deposits and submarine fumarolic deposits. An example of the former is a sublimation-type sulfur deposit, and an example of the latter is the kuroko deposit. Some kuroko deposits not only have a sedimentary structure, but also have clastic deposits such as mudstone, and can be considered to be a composite type of magma and sedimentary deposits, so-called submarine fumarolic deposits (SEDEX-type deposits). The kuroko deposit is unique to Japan. This deposit is defined as a strata bound deposit, and its formation date is from the Miocene epoch of the Neogene period. In the continental crustal shields of other countries, there are numerous massive sulfide deposits that were formed in the Precambrian under similar conditions to those of Kuroko. These deposits are called massive sulfide deposits. In hydrothermal deposits, some of the constituent minerals in the host rock surrounding the deposit are replaced by new minerals due to the hydrothermal activity of the deposit's formation, resulting in a mineral composition different from that of the original rock. This process is called host rock alteration, and typical examples include propylitic (chlorite) alteration, potassium feldspar alteration, argillic alteration, and silicic alteration. Host rock alteration sensitively reflects the physical and chemical conditions at the time of the deposit's formation, such as temperature, pressure (depth), and the chemical properties of the hydrothermal water, and because distinctive alteration zones develop systematically within a single deposit, it is used as an indicator for mineral deposit exploration. [Naoya Imai and Hiroaki Kaneda] Sedimentary depositsThey are also called sedimentary deposits. They are often layered and widely distributed, forming large deposits. Here, we will divide sedimentary deposits into (1) residual weathering deposits, (2) mechanical deposition deposits, (3) chemical and biochemical precipitation deposits, and (4) organic precipitation deposits. (1) Residual weathered deposits These deposits are formed mainly by chemical weathering. Weathering is particularly controlled by climatic conditions, so they are divided into several types based on this. Among these, bauxite deposits are typical, and were formed when almost all the components of the rocks except for aluminum were leached out under humid, rainy climatic conditions in the tropics or subtropics. (2) Mechanically deposited deposits These deposits are formed when certain chemically stable, heavy minerals are separated from the parent rock by the weathering of rocks, transported from the site along with rock and mineral fragments by the forces of water and wind, and mechanically concentrated by the sorting action of these forces. They are also called placer deposits or drift deposits. Some Malay-type tin deposits are fluvial drift deposits formed when cassiterite is concentrated at the bottom of the gravel layer deposited in old river channels, and the iron sand deposits in the coastal regions of the Sea of Japan are beach drift deposits. (3) Chemical and biochemical precipitation deposits These deposits are formed when substances dissolved in water by weathering are transported to another location and precipitated by chemical or biological processes. Deposits formed by these processes are also simply called ore layers. A representative example is the banded iron formations, which were formed 2 billion years ago by the precipitation of a large amount of iron oxide. Also included in this category are evaporite deposits of potash salt, rock salt, and anhydrite, which were formed by evaporation and dry distillation from the highly salty water of inland lakes and the surrounding lagoons of stable continents. (4) Organic Precipitation Deposits A typical example of this type of deposit is limestone deposits, which are composed of carbonate minerals. Carbonate minerals can also be formed by chemical precipitation, but in many cases, the remains of calcareous organisms such as spindle worms, corals, shellfish, and algae are the source of calcium carbonate. In Japan, which is poor in underground resources, limestone deposits are the only mineral resource that the country can be proud of in both quantity and quality, and large amounts of limestone are currently extracted through large-scale open-cut mining. [Naoya Imai and Hiroaki Kaneda] Metamorphic depositsThere are two types of metamorphism inside the Earth's crust: regional metamorphism and thermal metamorphism (contact metamorphism). When a rock layer containing an existing ore deposit undergoes regional metamorphism, the parent rock layer is transformed into crystalline schist with well-developed schistosity, and the ore deposit is also rolled into the schist and assumes a layered form that is in harmony with the schistosity. As a result of recrystallization, the structure and texture are completely changed, and the ore also develops microfolds and schistosity, erasing the appearance of the original ore deposit. For this reason, it is sometimes difficult to determine whether the original ore deposit was a congeneric or later replacement deposit, and researchers have differing opinions about the origin of the original ore deposit. The Besshi-type stratified copper-bearing iron sulfide deposit is an example. Such deposits are called regional metamorphic deposits. When igneous rocks intrude into the area after the deposit is formed, the heat released from the magma causes the rock layers around the igneous body to undergo thermal metamorphism, and a contact metamorphic zone develops around it, altering the mineral composition. When the deposit is absorbed into this zone, the mineral composition changes. The Yakeno and Kaso-type manganese deposits in the Ashio Mountains are examples of this, and are called thermal metamorphic deposits or contact metamorphic deposits. These and regional metamorphic deposits are collectively called metamorphic deposits. [Naoya Imai and Hiroaki Kaneda] Ore deposit morphology and explorationKnowledge of the morphology and internal structure of mineral deposits is not only important for considering the origin of mineral deposits, but is also very useful in determining the exploration and mining methods of mineral deposits. Mineral deposits are formed by various geological factors, so their size, morphology, and internal structure are also very diverse. Examples of classification based on morphology include veins that fill the cracks in rocks, chunks with irregular shapes formed by alternating rocks, pipes that extend in one direction, layers that develop parallel to the foliation and bedding of rocks, and disseminated deposits in which fine aggregates of ore minerals are scattered throughout the rock. Examples of deposits classified based on their structure are as follows: (1) A mass-like structure consisting of an irregular mixture of various ores, gangues, and stones of different sizes. Mineral deposits are unevenly distributed throughout the earth's crust and are a non-renewable resource with a finite extent. Therefore, the amount of a single mineral deposit that is being mined may decrease, but never increase. Like a human life, mines and oil fields that flourished will eventually deteriorate and eventually lose their "life" as mines or oil fields. In Japan, there were mines that continued to be excavated from the Edo period to the Showa era, such as Sado in Niigata Prefecture, Ikuno in Hyogo Prefecture, Ashio in Tochigi Prefecture, and Besshi in Ehime Prefecture. However, in the end, the "life" of these deposits was only prolonged due to their large scale and the discovery and capture of new ore bodies, and most of them have now disappeared as mines. Humans have been using underground resources in various ways since prehistoric times. Human consumption of metal and mineral resources has been on the rise since the Industrial Revolution in the 18th century, but with the expansion of the world economy due to the rapid industrialization that followed World War II, consumption has accelerated. The decline in existing ore reserves in developed mines has become noticeable, and the acquisition of new reserves through mineral exploration has become an urgent issue. In addition to local exploration around known mineral deposits, there is also an urgent need to widely search for new mineral deposits both domestically and internationally. In the past, when science was not yet developed, the methods of searching for underground resources were extremely primitive, such as magicians using divining rods to find them or relying on various superstitions, which were unfounded. However, people who had no scientific knowledge about underground resources gradually learned various facts through experience and were able to locate mineral deposits. In fact, in areas where the existence of mineral deposits is predicted (mineralized zones), there is evidence that people in the past had already attempted mineral exploration, and even when looking at old mines, we can see that mining technology, although primitive compared to current technology, was well developed at the time. [Naoya Imai and Hiroaki Kaneda] The future of resource developmentIn today's world, with the advancement of science and technology, methods of mineral exploration have also made remarkable progress, based on knowledge of various sciences in the fields of earth sciences, such as geology, geophysics, and geochemistry, and modern technology such as drilling engineering. Although production from already developed mines and oil fields is decreasing year by year, the world's production of metals and oil is increasing year by year because new mineral deposits are discovered and developed one after another. However, it is self-evident that there is a limit to the absolute amount of underground resources in the world. Japan's recovery after the Second World War was largely due to the intensive production of coal as an energy source and the production of pyrite, which was the basis of agricultural fertilizer, and its subsequent economic development came to depend on petroleum energy. Today, Japan has become one of the world's leading resource consumers. Furthermore, with the modernization of developing countries, such as China, the world's consumption of underground resources is showing an increasing trend. It is inevitable that humanity will sooner or later face the crisis of depleting underground resources, whether metal, nonmetal, or energy. However, as things stand, it is necessary to discover and confirm new deposits with an eye to the future. Manganese nodules on the ocean floor, seabed metal resources with high metal concentrations, and seabed sediments can also be considered as future resources. We will also likely be forced to recover useful elements from seawater itself. In addition to discovering new deposits, other important issues will include the development of technologies for resource extraction and production, and the development of technologies for recovering useful resources from waste, known as urban mines. In the future, we will need to make efforts to conserve and rationally use underground resources, while also promoting research into resource issues, including marine resources, as well as mineral deposit exploration and development technologies. It is also necessary to aim for a global redistribution of resources through international contributions from the perspective of optimal and effective resource use. In that sense, we must correctly recognize the uneven distribution of underground resources on the planet, and establish a resource policy that will contribute to the exploration and development of underground resources around the world, with international cooperation as the core by fostering a good international sense. [Naoya Imai and Hiroaki Kaneda] "Lindgren, translated by Terui Takeo, "Deposit Studies" (1942-1943, Kogensha)" ▽ "Advances in mineral science" (1956, Tomiyamabo)" ▽ "Tatsuo Tatsuo, "Fundamentals of Modern Mineral Science" (1977, University of Tokyo Press)" ▽ "Ansoni M. Evans, "Introduction to Mineral Geology" (1989, Sanyosha)" ▽ "Iiyama Toshimichi, "Introduction to Mineral Science" (1989, University of Tokyo Press)" ▽ "Ishikawa Yohei, "Black Mineral Mine: Looking for World-Pride Japanese Resources" (1991, Kyoritsu Publishing)" ▽ "Banba Takeo, "Now Examining the Earth's Assets: Mineral Science and Mineral Resources" Expanded and revised edition (1993, Educational Publishing Center)" ▽ "Edited by Sasaki Akira, Ishihara Shunzo, and Seki Yotaro, "Edited by Earth Resources/Development of the Surface" (1995, Iwanami Shoten)" ▽ "Introduction to Earth Mineral Resources" (1998, University of Tokyo Press)" ▽ "Shigami Hide, "Theory of Mineral Resources" (2003, Kyushu University Press)" ▽ "Saeki You, "New Developments in South Africa's Gold Mining Industry: From the 1930s New Mineral Deposit Exploration to 1970" (2004, Shinhyo)" ▽ "H. Schneiderhöhn Lehrbuch der Erzlagerstättenkunde (1941, Springer Verlag, Stuttgard)" [Reference Items] | | | | | |Black | | | | | |Mineral | | | | |Sedimentary | |Nagli | | | | | | | |Metamorphic | |Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
地殻中で有用な元素・鉱物・岩石、それに石油・天然ガスなどの地球資源がとくに濃集した地質集合体をいう。地球資源は、われわれが日常生活でごく普通に使用しており、人間の生活・繁栄には必要不可欠なものである。金、銀、銅、鉛、亜鉛、錫(すず)、タングステン、鉄のような鉱物に含まれ有用元素を対象とする金属元素資源、粘土や沸石(ふっせき)などの有用鉱物を対象とする鉱物資源(工業用鉱物資源または非金属資源ともいう)、花崗(かこう)岩や石灰石などの土石資源、それに石炭、石油、天然ガスのエネルギー資源などさまざまある。ところで、これら地球資源が、地殻中のどこに、どのような状態で存在し、どのような場合に採取・採掘されるのかということは一般には知られていない。あらゆる地球資源物質は、地殻のさまざまな岩石中に含まれている。一般にそれらの平均濃度はクラーク数として表示されている。ところが、地殻中での平均濃度はきわめて低く、普通の岩石からこれら有用資源を回収することは経済的に採算のあわないことになる。これらの資源が経済的に回収可能であるためには、地殻中に有用元素・鉱物やエネルギー資源物質がかなりの濃度で濃集している必要がある。これらが濃集した場所が鉱床であり、鉱床は異常濃集体の部分と定義できる。鉱床自体は、この意味で特殊な地質体ということもできる。また、有用物質の濃集の度合い(濃集度)がどの程度であれば鉱床とよべるかは、元素の地殻存在度との比率や社会の需要度、それにその国の経済発展の度合いやインフラストラクチャー(社会的生産基盤)など種々の社会経済的・技術的要因が関連して決められる。鉱床と認定された地質体領域がそのときの経済性評価によってさらに狭い領域に縮小されたり、あるいは広くなったりもする。また、技術革新などにより新たな資源素材を採掘対象とした鉱床の登場ということもある。 [今井直哉・金田博彰] 鉱石・母岩・脈石鉱床は、鉱石と鉱床母岩より構成される。鉱石は有用な元素および鉱物などが濃集する地質集合体であり、鉱床母岩は鉱石の周縁部および近傍に分布する岩石である。鉱石は、有用元素・鉱物が濃集する鉱石鉱物と鉱床生成過程で形成した脈石鉱物(みゃくせきこうぶつ)とよばれる不用な鉱物よりなる。この脈石鉱物は、鉱床母岩を含むこともある。鉱石の価値は、有用元素および鉱物の含有量を重量パーセントまたはグラム/トンで示し、これを鉱床品位という。採掘可能な鉱床品位で最低品位をカットオフグレードcut-off-gradeという。最低採掘品位は、当事国の経済状態、世界の経済状態、技術的条件、インフラストラクチャーなどさまざまな条件が関連して決められる。鉱床にはこのような金属鉱物や元素の濃集によるもののほかに、粘土・陶石や石灰石、それに花崗岩などの岩石固体物質を採掘対象とするもの、また石油、天然ガス鉱床のように炭化水素類が流体として地層中に集積・貯溜(ちょりゅう)されたものもある。 現在でも、アフリカ大陸とアラビア半島に挟まれた紅海の海底の窪(くぼ)みや大洋の海嶺(かいれい)では多量の金属硫化物を含む堆積(たいせき)物が沈殿し、かつ陸域の地熱地帯でもこの現象が認められる。また、日本の北海道の火山地帯(知床(しれとこ)半島)において、硫気孔から間欠的に硫黄(いおう)溶融体が流出し現世の溶流型硫黄鉱床を形成した例も知られている。また、中央海嶺近傍の熱水噴出帯ではブラックスモーカー、ホワイトスモーカーとよばれる流体が噴出孔より出て、それぞれ鉄硫化物を主体とした鉱物、ケイ酸塩・炭酸塩を主体とした鉱物が形成されつつある。しかし、鉱物・エネルギー資源鉱床の大部分は、46億年にわたる地球がたどった長い歴史の過程のなかで、マグマ作用、熱水作用、堆積作用、変成作用の地質作用により形成された歴史的産物である。鉱床もしくは鉱石の定義には、既述の特殊な地殻構成物質(特殊岩石)という地球科学的観点にたった基本的概念のほかに、それが利潤をもって開発、利用できるという前提がある。したがって、それらの定義は、人間社会における社会的要因による変数に左右される。たとえば金属や原油の価格変動、鉱床のもつ立地条件などの経済的要因や、開発技術や鉱石処理技術の発展がそれである。かつて鉱床としての地位をまったく認められなかったところが現在重要な鉱床となったもの、これとは逆に、かつて鉱床として盛んに開発されていたところが現在まったく顧みられなくなったもの、また高品位の鉱石の鉱床でありながら技術的問題が未解決なため未開発のまま放置されているものがある。 近年になり経済的価値が上昇した鉱床例として、現在世界の銅供給源として重要な役割を果たしている斑岩銅鉱床(はんがんどうこうしょう)があげられる。斑岩銅鉱床は大規模であるが、鉱石の銅品位が低く「巨大低品位鉱床」とよばれている。この鉱床は19世紀にはまったく採掘されていなかったが、20世紀に入り比較的高品位の鉱床、あるいはその高品位部分から開発が進められ、1950年代以降は銅品位が0.5ないし1.0%の低品位部も鉱石として採掘されるようになった。その理由は、鉱床が巨大であるということのほか、鉱床が比較的地下浅所に位置する自然条件に対応して、大型重機械の導入による大規模露天掘り採掘が可能となり、十分利潤があげられるようになったからである。 [今井直哉・金田博彰] 鉱床の分類鉱床の分類は、人間社会の目的および産業における用途別などの立場から、金属鉱床、非金属鉱床、燃料鉱床に大別される。また、経済的・法律的立場(たとえば鉱業法による鉱種の区別)から金属鉱床は金・銀・銅・鉛・亜鉛・錫(すず)などに、非金属鉱床は硫黄(いおう)・石灰石・ドロマイト(苦灰石)・珪(けい)石・蛍石などに細分される。燃料鉱床はさらに有機燃料と核燃料に区分され、前者は石炭・石油・可燃性ガスに、後者はウラン・トリウムに細分されている。これらの分類は便宜的なものであるから、しばしばいくつかの問題がおこる。たとえば、ドロマイトは製鉄・製鋼工業やガラス工業で利用されており、ドロマイト鉱床は普通、非金属鉱床に分類されているが、これから金属マグネシウムを回収することもあり、この場合には金属鉱床に入る。核燃料鉱床の主力であるウラン鉱床は、金属鉱床に分類されることもある。 もう一つの鉱床の分類として、鉱床の成因に着目した分類法がある。すなわち、鉱石と周囲の岩石との地質作用の関係より、マグマ成鉱床、熱水成鉱床、堆積成鉱床、変成鉱床の四つに大別できる。これらはさらに後述のように細分される。また、鉱床はこれを取り囲む岩石(母岩)との成因的関係に基づいて、同生鉱床、後生鉱床に大別することがよく行われている。周囲の岩石の生成と同じ時期に生成した鉱床を同生鉱床といい、周囲の岩石の生成後に生成した鉱床を後生鉱床という。 鉱床の成因形式による分類は、16世紀の中ごろドイツの鉱山学者アグリコラが最初に行って以来多くの研究者により試みられてきたが、その分類は各研究者によりかなり異なっている。それは研究者ごとの鉱床の産状に対する認識、地質現象の理解や解釈の仕方、および鉱床生成の諸条件・要因における重点の置き方の相違によって生じる。すなわち、アメリカの鉱床学者リンドグレンによる分類は鉱床生成の深度に基準が置かれ、またスイスの地質学者・地球化学者ニグリの分類は、イギリスの岩石学者ケネディW. Q. Kennedy(1903―1979)による火成活動の火山、深成の2系列を目安としている。ドイツの鉱床学者シュナイダーヘンH. Schneiderhöhn(1887―1962)は、成因を同じくする鉱石中の鉱物共生の特徴を基準にして地殻の構造発達史の基礎にたって鉱床の成因分類を行った。 [今井直哉・金田博彰] マグマ成鉱床マントル上部あるいは地殻下部で発生したマグマ(珪酸塩溶融体)は地殻上部に上昇貫入し、冷却・固結する。冷却の過程で多種な鉱物を晶出するとともに、マグマ残漿(ざんしょう)中には水や炭酸ガスなどの流体物質が濃集していく。マグマ成鉱床はこのようなマグマ活動(火成活動)に関連した地質作用により生成した鉱床であって、(1)正マグマ鉱床(含カーボナタイト鉱床)、(2)ペグマタイト鉱床、(3)気成鉱床に細分される。 (1)正マグマ鉱床 マグマの冷却の過程で不混和による硫化物マグマとケイ酸塩マグマの分離、もしくはマグマ結晶分化作用による結晶の沈積・濃集により生成した鉱床である。前者の鉱床例としてはカナダ、サドベリーのニッケル・銅鉱床、後者の例として、ザンビアのグレートダイクのクロム鉱床、南アフリカのパラボラの白金鉱床などがある。ダイヤモンドを含みパイプ状形態を示すキンバレー岩は、結晶とガスに著しく富んだ「マグマ」として100~200キロメートルの深さから上部マントルと地殻を通り抜け地表に達したダイアピルdiapirとよばれる特徴的な地質構造を示す。これも正マグマ鉱床に入れられている。また、アルカリ岩複合岩体に伴うカーボナタイトは炭酸塩を主とする溶融体から晶出したと考えられており、このなかのニオブや希土類元素を含むカーボナタイト鉱床も正マグマ鉱床に分類される。 (2)ペグマタイト鉱床 マグマの固結が進み、晶出した鉱物が増えるにつれて、マグマの中に含まれていた水・炭酸ガスを主とする揮発性成分がしだいに残存マグマ(残漿)に濃集し、流動性に富むようになり、圧力も上昇する。この時期をペグマタイト期とよび、希元素が揮発性化合物として残漿中に濃集する。このような流動性に富んだ残漿が地殻の比較的深部の割れ目に侵入し徐々に固結して生じたのがペグマタイト鉱床である。 (3)気成鉱床 ペグマタイト鉱床中でマグマの固結がさらに進み、珪酸塩鉱物の晶出が終わると、揮発性成分が最大量に達し、有用金属を溶かした高温流体の圧力は最大になる。このようにして生じた高温流体が花崗(かこう)岩頂部や地殻の割れ目に侵入して生成したのが気成鉱床である。 [今井直哉・金田博彰] 熱水成鉱床マグマ残漿(ざんしょう)の(最終)高温流体が活動する気成期を過ぎて天水の混入などにより温度が降下すると、流体はさまざまな金属元素、非金属元素を溶かし込んだ熱水(溶液)となる。この時期を熱水期とよび、この時期にできた鉱床を熱水成鉱床という。熱水性鉱床、熱水鉱床ともいう。安定同位体地球化学の研究より、水素、酸素、炭素、硫黄(いおう)の安定同位体の知識が鉱床学研究に広く取り入られるようになった。その結果、鉱床生成に関与した熱水の起源の問題が論議されるようになり、熱水はマグマ水ばかりでなく、地下深部に浸透した地表水や、地層中に閉じ込められた化石水が、マグマ活動により加熱されたものもあることが、しだいにわかってきた。また、鉱石を形成する元素の供給もすべてがマグマ由来ではないということも安定同位体の研究より支持されている。すなわち、地殻内部に発生した熱水は上昇の過程で、周囲の岩石から鉱石成分を選択的に溶脱して取り込み、この熱水から鉱石が沈殿すると考えられるようになり、熱水系における流体と岩石との相互作用が重視されるようになった。また、地下水が熱水の中に混入することにより熱水の温度低下現象が生じ、元素濃度が高くなった熱水から諸鉱物の沈殿・集積が行われ、有用元素・鉱物が随伴することによって熱水成鉱床が形成される。鉱床構成元素を含む熱水は、鉱化流体あるいは鉱液ともよばれる。 地殻深部で生成した熱水は高温で密度が小さいため地表に向かって上昇する。上昇する過程で温度の低下や圧力の低下などの物理・化学的要因により鉱床が生成する。この際、熱水の通路の地質構造や地質の種類によりさまざまな型の鉱床が形成される。すなわち、(1)鉱脈型鉱床、(2)スカルン型鉱床、(3)斑岩型鉱床、それに(4)火山噴気鉱床に細分できる。 (1)鉱脈型鉱床 熱水または鉱化流体が、地殻中の割れ目に侵入し、そこで鉱物の沈殿・集積が行われると、鉱脈型鉱床ができる。また、生成する地下深度により深熱水成鉱脈型鉱床、中熱水成鉱脈型鉱床、浅熱水成鉱脈型鉱床と細分されている。三つの型の鉱脈鉱床は、産出する鉱種に関して以下のような特徴を示す。深熱水成の場合には、錫(すず)、タングステン、それに金などを、中熱水成では銅、鉛、亜鉛、金などを、浅熱水成は金、銀、水銀、アンチモン、硫黄などを比較的多量産出する。また、地下浅所で、浅熱水成鉱脈から深熱水成鉱脈のすべての鉱種産出の特徴を備えている鉱脈鉱床がある。この現象をテレスコーピングtelescopingといい、ゼノサーマルXenothermal鉱床に分類される。 (2)スカルン型鉱床 鉱化流体が炭酸塩鉱物、とくに石灰岩と接触することにより、スカルン型鉱床が生成する。この型の鉱床は接触交代鉱床ともいう。鉱化流体と炭酸鉱物が反応することにより、カルシウムや鉄を含む鉱物、単斜輝石(きせき)(透輝石、へデン輝石)や柘榴(ざくろ)石が生成される。これらの鉱物がスカルン鉱物とよばれる。スカルン型鉱床では、大量のスカルン鉱物が存在する。鉱化流体からスカルン鉱物が沈殿することにより、流体の物理化学的性質が変化する。この物理化学的変化に伴って、鉱化流体から有用鉱物が沈殿し、鉱床が形成される。一般に、スカルン型鉱床から産出する鉱種として、銅、鉛、亜鉛、タングステン、鉄などがある。スカルン型鉱床と生成条件が類似する鉱床にミシシッピ渓谷型鉛・亜鉛鉱床がある。石灰岩を母岩とする熱水成鉱床であるが、スカルン鉱物が存在しない。この型の鉱床は、遠熱水成鉱床Telethermal depositとよばれ、熱水生成の熱源が鉱床から遠距離のところにあるとされている。なお、ミシシッピ渓谷型鉱床の鉱化流体の塩化ナトリウムNaCl濃度は十数%以上と非常に高いことが特徴である。 (3)斑岩型鉱床 活発なマグマ活動によるたび重なるマグマ貫入・固結化作用のため、固結岩体頂部は張力場になり、多数の割れ目が発達する。この火成岩体頂部が鉱床形成の場として最適であり、金属成分が割れ目を充填(じゅうてん)し、大規模鉱床を形成する。マグマ活動が活発な火成岩体頂部は、斑岩(はんがん)型鉱床、とくに斑岩銅鉱床の形成の場であり、品位は低いにもかかわらず鉱床規模・鉱量は膨大である。中生代白亜紀から古~新第三紀に生成した斑岩銅鉱床は、海洋プレートの沈み込み(サブダクション)帯から、大陸側100~200キロメートル程度の範囲に分布するのが特徴で、とくにこの分布特徴は、環太平洋域において顕著となる。 (4)火山噴気鉱床 マグマが地表あるいは海底に噴出した場合、この火山活動に関連して生じたさまざまな有用金属・非金属を含む高温流体(噴気)が陸上または海洋などの水の中に放出される。火山噴気鉱床はこのような火山噴気により生成したもので、陸上火山噴気鉱床と海底噴気堆積鉱床(たいせきこうしょう)の二つに細分される。前者の例として昇華型硫黄鉱床、後者の例として黒鉱鉱床があげられる。黒鉱鉱床の一部は堆積構造をもつだけでなく、泥岩など砕屑(さいせつ)性堆積物を挟み、マグマ成と堆積成の複合型とみなすことができ、いわゆる海底噴気堆積成鉱床(SEDEX型鉱床Sedimentary Exhalative Deposit)に属するものと考えられる。黒鉱鉱床は、日本に特有の鉱床である。この鉱床は、年代規制鉱床Strata Bound Depositの定義があり、生成年代は新第三紀中新世である。海外の大陸地殻楯状(たてじょう)地には先カンブリア時代に黒鉱と同様の生成条件で形成された塊状硫化物鉱床が多数分布する。これらの鉱床は塊状硫化物鉱床Massive Sulfide Depositとよばれる。 熱水成鉱床においては、鉱床生成の熱水活動により鉱床周囲の母岩の構成鉱物のあるものが新たな鉱物に置き換えられ、もとの岩石と異なった鉱物組成をもつようになる。このような作用を母岩の変質といい、プロピライト(緑泥石)化変質、カリ長石化変質、粘土化変質、珪化変質はその代表的なものである。母岩の変質は、温度、圧力(深度)、熱水の化学的性質など鉱床生成時の物理化学的条件を敏感に反映し、一つの鉱床において特徴ある変質帯が系統的に発達するので、鉱床探査の指標に利用される。 [今井直哉・金田博彰] 堆積成鉱床堆積鉱床ともいう。層状をなして広い分布を示し大規模な鉱床をつくる例が多い。ここでは、堆積成鉱床を、(1)風化残留鉱床、(2)機械的堆積鉱床、(3)化学的・生化学的沈殿鉱床、(4)有機的沈殿鉱床に細分する。 (1)風化残留鉱床 この鉱床は、主として化学的風化作用により形成された鉱床である。風化作用はとくに気候条件に支配されるので、これに基づいていくつかの型に分けられている。このなかで代表的なボーキサイト鉱床は、熱帯ないし亜熱帯の多雨湿潤な気候条件のもとで、岩石のアルミニウム以外のほとんどすべての成分が溶脱して生成したものである。 (2)機械的堆積鉱床 この鉱床は、岩石の風化作用により母岩から分離された、化学的に安定で比重の大きい特定の鉱物が、水や風の営力で岩石・鉱物の破片とともに現地から運搬され、さらにこれら営力の淘汰(とうた)作用により機械的に濃集した砂礫鉱床(されきこうしょう)で、砂鉱床(さこうしょう)または漂砂鉱床ともよばれる。マレー型錫鉱床(すずこうしょう)の一部は、旧河道に堆積した砂礫層の下部に錫石が濃集してできた河成漂砂鉱床であり、日本海の海岸地方にある砂鉄鉱床は海浜漂砂鉱床である。 (3)化学的・生化学的沈殿鉱床 この鉱床は、風化作用によって水に溶解した物質が移動して他所に運ばれ化学または生物作用により沈殿したものであって、これらの作用によって生じた鉱床を単に鉱層ともいう。20億年前に酸化鉄の大量の沈殿により生じた縞状鉄鉱層(しまじょうてつこうそう)がその代表的なものである。また、安定大陸の内陸湖やその周辺の潟の濃厚塩水から蒸発・乾溜(かんりゅう)によりできたカリ塩、岩塩、硬石膏(せっこう)のエバポライトevaporite鉱床もこのなかに入る。 (4)有機的沈殿鉱床 この鉱床の代表的なものが炭酸塩鉱物より構成される石灰石鉱床である。炭酸塩鉱物は化学的沈殿によっても形成されるが、多くの場合、紡錘(ぼうすい)虫、サンゴ、貝類、藻類など石灰質生物の遺骸(いがい)が炭酸カルシウムの供給源となったものである。地下資源に乏しい日本において、石灰石鉱床は量・質ともに誇れるただ一つの鉱物資源であって、現在大規模な露天掘りによって大量に石灰石が採掘されている。 [今井直哉・金田博彰] 変成鉱床地殻の内部における変成作用には、広域変成作用と熱変成作用(接触変成作用)とがある。既存の鉱床を含む岩層が広域変成作用を被った場合、原岩層は片理の発達した結晶片岩に変わると同時に、鉱床もこれに巻き込まれ、圧延されて片理と調和的な層状の形態をとり、また再結晶の結果、構造・組織がすっかり変わってしまい、鉱石にも微褶曲(しゅうきょく)構造や片状構造が発達して、もとの鉱床の姿は打ち消されてしまう。このため、もとの鉱床が同生の鉱層であったのか、後生の交代鉱床であったのか判断がつかないことがあり、研究者により、もとの鉱床の成因について意見が分かれてくる。別子(べっし)式層状含銅硫化鉄鉱床はその例である。このような鉱床を広域変成鉱床という。 鉱床生成後に、この付近に火成岩が貫入すると、マグマから放出される熱のため火成岩体の周囲の岩層は熱変成作用を被り、これを取り囲んで鉱物組成が改変された接触変成帯が発達する。鉱床がこれに取り込まれると鉱物組成が変わってくる。足尾(あしお)山地の焼野・加蘇(かそ)型のマンガン鉱床がこれにあたり、熱変成鉱床あるいは接触変成鉱床といい、これと広域変成鉱床を一括して変成鉱床という。 [今井直哉・金田博彰] 鉱床の形態と探査鉱床の形態と内部構造についての知識は、鉱床の成因を考察するために大切であるだけでなく、鉱床の探査や採鉱法の決定にたいへん役だつものである。鉱床はいろいろな地質的要因で生成されるので、その規模、形態、内部構造も変化に富む。形態から分類される例として、岩石の割れ目を満たす脈状、岩石を交代した不規則な形を示す塊状、一方向に伸びたパイプ状、岩石の層理・片理の面構造に平行に発達する層状、岩石全体に微細な鉱石鉱物の集合体が散点する鉱染状などがある。 鉱床の構造から分類される例は次のとおりである。 (1)さまざまな鉱石、脈石(みゃくせき)、中石(なかいし)など大きさの違ったものが不規則に混ざり合った塊状構造 鉱床は地殻中に偏在し、有限の広がりをもった再生不可能な資源である。したがって、採掘されている一つの鉱床は減ることがあっても増えることがない。隆盛を極めた鉱山も油田も、人間の一生と同様にやがて老衰し、ついに鉱山や油田としての「生命」を失ってしまう。日本でも、新潟県佐渡、兵庫県生野(いくの)、栃木県足尾(あしお)、愛媛県別子(べっし)などのように江戸時代から昭和年代まで掘り続けられた鉱山があった。しかし、つまるところ、鉱床が大規模なことと、新鉱体の発見・捕捉(ほそく)により「生命」が長引いただけで、現在その大部分は鉱山としての姿を消してしまった。 人類は有史以前からいろいろな形で地下資源を利用してきた。そして人類の金属・鉱物資源の消費は18世紀の産業革命以来増加の傾向をたどったが、第二次世界大戦後の急速な工業化の進展による世界経済の拡大に伴い、その消費は加速度的に増大した。既開発の諸鉱山では既存鉱量の減少が顕著になり、鉱床探査による新たな鉱量の獲得が切実な問題となっている。また、このような既知鉱床の周辺の局所探査だけでなく、新たな鉱床を国内・外において広く探し求める必要に迫られてもいる。 かつて、まだ科学の発達していないころ地下資源を探す方法はきわめて原始的なもので、魔術師が占い棒でこれを探し求めたり、いろいろな迷信を頼りにした根拠の薄いものであった。しかし、地下資源について科学的知識のなかった人々も経験によりしだいにいろいろな事実を学び取るようになり、鉱床を探し当てられるようになってきた。実際のところ、鉱床の存在が予想できる地域(鉱化帯)にはすでに昔の人々が鉱床探査を試みた形跡があり、昔の旧坑をみても、現在の技術に比べると幼稚ではあるが、りっぱな鉱山技術が発達していたことがわかる。 [今井直哉・金田博彰] 資源開発の将来科学および科学技術の進歩した現在では、地質学、地球物理学、地球化学など地球科学の分野における諸科学の知識や試錐(しすい)工学など近代技術を基にして、鉱床探査の方法も著しい進歩を遂げた。既開発の鉱山や油田からの生産量が年々減少していくのにもかかわらず、世界の金属や石油の生産が年々増加していくのは、新たな鉱床が探し当てられ次々と開発されるからである。しかし世界の地下資源の絶対量には限界があることは自明である。 日本の第二次世界大戦後の復興は、エネルギー源としての石炭の傾斜生産と、農業肥料の基となった硫化鉄鉱の生産に負うところが大きく、その後の経済的発展は石油エネルギーに依存するに至った。現在、日本は世界屈指の資源消費国になった。また、中国に代表されるように、世界の開発途上国の近代化に伴って、地下資源の世界消費量はますます増大する傾向にある。 人類は早晩、金属、非金属、エネルギーを問わず地下資源の枯渇という危機に直面することは必至である。ただし現状としては、将来をにらんだ新鉱床の発見・確認が必要である。大洋底のマンガン団塊や金属濃度の高い海底金属資源や海底堆積(たいせき)物なども未来資源の一つとして捉えることができる。また、海水そのものから有用元素を回収せざるをえない状況になるであろう。新鉱床発見に加え、資源採掘や生産などの技術開発、都市鉱山と称されている廃棄物からの有用資源回収の技術開発なども重要な課題であろう。今後、地下資源の消費の節約、合理的利用に努力するとともに、鉱床探査・開発技術だけでなく、海洋資源を含めた資源問題の研究を進め、また、資源の最適・有効利用の観点より、国際貢献を通した、世界的な資源の再配分を目することも必要である。その意味で、地下資源の地球上における偏在性を正しく認識し、優れた国際感覚の育成により国際間の協調を主軸とし、世界各地の地下資源の探査・開発に寄与する資源政策を確立すべきである。 [今井直哉・金田博彰] 『リンドグレン著、照井武雄訳『鉱床学』全2冊(1942~1943・工元社)』▽『渡辺武男編『鉱床学の進歩』(1956・冨山房)』▽『立見辰雄編『現代鉱床学の基礎』(1977・東京大学出版会)』▽『アンソニ・M・エヴァンズ著、三宅輝海訳『鉱床地質学序説』(1989・山洋社)』▽『飯山敏道著『鉱床学概論』(1989・東京大学出版会)』▽『石川洋平著『黒鉱――世界に誇る日本的資源をもとめて』(1991・共立出版)』▽『番場猛夫著『いま地球の財産を診る――鉱床学と鉱物資源』増補改訂版(1993・教育出版センター)』▽『佐々木昭・石原舜三・関陽太郎編『地球の資源/地表の開発』(1995・岩波書店)』▽『飯山敏道著『地球鉱物資源入門』(1998・東京大学出版会)』▽『志賀美英著『鉱物資源論』(2003・九州大学出版会)』▽『佐伯尤著『南アフリカ金鉱業の新展開――1930年代新鉱床探査から1970年まで』(2004・新評論)』▽『H. SchneiderhöhnLehrbuch der Erzlagerstättenkunde(1941, Springer Verlag, Stuttgard)』 [参照項目] | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
(1) The common logarithm of a positive number A ca...
The capital of the province of the same name, in t...
… [Makoto Nishida]. … *Some of the terminology th...
...They swim round and round on the surface of th...
…Hallowmas on November 1st, on the other hand, wa...
…In the early period of the Northern and Southern...
…Oxo compounds are also called oxo compounds. A g...
A doxology from Java, Indonesia. It was written i...
A bird of the Anatidae family (illustration). Tota...
A large perennial or annual plant of the Papaverac...
〘Noun〙① = Igaki (Saigaki)② A gilt bronze ornament ...
Born: May 3, 1469 in Florence Died June 21, 1527. ...
This refers to industries such as shipbuilding, co...
…In the past, it was written as Kisai, and in the...
...This single-sided drum is held in front of the...