Nominal chart - Nominal chart

Japanese: 計算図表 - けいさんずひょう
Nominal chart - Nominal chart

Usually, the relationships between three or more variables are shown in a graph to make the relationships easier to read. There are collinear graphs and nomograms.

A collocation diagram is a diagram that allows you to find pairs of values ​​that satisfy the relationship between variables as intersections of lines. For example, in the case of uv = w, if a specific value is given to w, the relationship between u and v becomes a hyperbola, so the collocation diagram of uv = w will be a group of hyperbolae as shown in Figure A (1). If you take the logarithm of both sides of uv = w, logu + logv = logw, so if you use logarithmic graph paper, the collocation diagram of uv = w can be converted into a group of straight lines as shown in Figure A (2). In general, collocation diagrams are time-consuming to create, and when used, it is difficult to interpolate by eye, making them inferior to the collinear diagrams described below.

A nomogram is a chart that allows the relationship between the values ​​of variables to be read as a single straight line. Next, we will explain some basic types as examples.

Basic type [1] f 1 (u) + f 2 (v) = f 3 (w) is a collinear diagram of additive operations, also known as a triple parallel line diagram. As shown in Figure B (1), x = mf 1 (u), y = nf 2 (v),
z = {mn/(m+n)} f3 (w)
When a function scale of x = mf(u) is marked, the relation f1 (u) + f2 (v) = f3 (w) holds between the marks u, v, and w. A function scale or function rule of x = mf(u) is made by marking u1 , u2 , ... at points corresponding to the distances from the origin of x1 = f( u1 ), x2 = f( u2 ), ... according to the values ​​of u, u1 , u2 , .... To make a chart for finding the lengths of the sides of a right triangle using Pythagoras' theorem, if m = n = 1 since a2 + b2 = c2 , then the function scales x = a2 , y = b2 , z = (1/2) c2 should be marked ( Figure B (2)).

Basic type [2] f 1 (u) f 2 (v) = f 3 (w) This is a collinear diagram of multiplication, also called a Z-shaped diagram. As shown in Figure C (1), draw parallel lines through both ends of the line segment AB = k to create a Z-shaped figure. x = mk/{m + nf 1 (u)},
y= mf2 (v), z= nf3 (w)
If we use the function scale, the relationship between u, v, and w is f 1 (u) · f 2 (v) = f 3 (w). Figure C (2) is a nomogram for uv = w. Taking the logarithms of both sides of the basic form [2] gives logf 1 (u) + logf 2 (v) = logf 3 (w), so it can also be made into a nomogram for basic form [1] by using a logarithmic scale.

Basic type [3] 1/{f 1 (u)} + 1/{f 2 (v)} + 1/{f 3 (w)} This is called a tri-intersecting line diagram. As shown in Figure D (1), draw three straight lines starting from point O, and mark x = mf 1 (u) on Ox and y = nf 2 (v) on Oy. Next, mark z' = mf 3 (w) on Ox, then project that mark onto Oz using a straight line parallel to Oy and mark it on Oz. Then, the relationship between u, v, and w in basic type [3] holds. If we set m = n here, Oz becomes the bisector of the angle made by Ox and Oy. The lens formula

If the nomogram of the above is bisectored at ∠xOy=120°Oz, then all axes will have the same scale and it will look like Figure D (2).

[Katano Zenichiro]

History of Nomograms

The nomogram was invented in 1884 by Maurice d'Ocagne (1862-1938), an engineer and mathematician who was a professor at the École Polytechnique in France. He called this type of chart a nomogram and the study of it nomography. Nomograms began as a branch of applied mathematics that studies how to illustrate formulas, but because they are convenient because they can be used repeatedly indefinitely once created, they have also been used to calculate calculus and find solutions to fixed algebraic and differential equations, and have come to be used in a wide range of fields, including not only science and engineering but also medicine and economics.

[Katano Zenichiro]

"Calculation Charts" by Kinnosuke Ogura (1940, Iwanami Complete Books)

Concentric point diagram (Figure A)
©Shogakukan ">

Concentric point diagram (Figure A)

Basic type of nomogram (1) (Figure B)
©Shogakukan ">

Basic type of nomogram (1) (Figure B)

Basic type of nomogram (2) (Figure C)
©Shogakukan ">

Basic type of nomogram (2) (Figure C)

Basic type of nomogram (3) (Figure D)
©Shogakukan ">

Basic type of nomogram (3) (Figure D)


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

普通、三つ以上の変数の間に成り立つ関係式を図表で表し、簡単に関係が読み取れるようにしたもので、共点図表と共線図表がある。

 共点図表は、変数の関係を満たす値の組が線の交点として求められるようにしたもので、たとえばuv=wの場合、wに特定の数値を与えれば、uとvの関係は双曲線になるので、uv=wの共点図表は図A(1)のような双曲線群になる。もしuv=wの両辺の対数をとればlogu+logv=logwとなるので、対数方眼紙を利用すれば、uv=wの共点図表は図A(2)のような直線群に変換できる。一般に共点図表は作成に手間がかかり、使用する場合も目分量による補間がむずかしく、次に述べる共線図表に比べると劣る。

 共線図表は、変数の値の関係を1本の直線で読み取れるようにしたもので、次にいくつかの基本型を例として解説してみよう。

基本型〔1〕 f1(u)+f2(v)=f3(w) 加法の共線図表で、三平行線型図表といわれる。図B(1)のようにm : nの間隔に平行に引かれた3本の直線上に
  x=mf1(u), y=nf2(v),
  z={mn/(m+n)}f3(w)
の関数目盛りを目盛ると、目盛りu、v、wの間にf1(u)+f2(v)=f3(w)の関係式が成り立つ。x=mf(u)の関数目盛りまたは関数尺というのは、uの値u1、u2、……に応じて原点からx1=f(u1), x2=f(u2),……の距離に相当する点にu1、u2、……と記入してつくられたものである。ピタゴラスの定理によって、直角三角形の辺の長さを求める図表をつくるには、a2+b2=c2からm=n=1とすればx=a2, y=b2, z=(1/2)c2の関数目盛りを目盛ればよい(図B(2))。

基本型〔2〕 f1(u)・f2(v)=f3(w) 乗法の共線図表で、Z字型図表といわれる。図C(1)のように線分AB=kの両端を通って平行線を引きZ字型の図形をつくり
  x=mk/{m+nf1(u)},
  y=mf2(v), z=nf3(w)
の関数目盛りを目盛れば、u、v、wの間にf1(u)・f2(v)=f3(w)の関係式が成り立つ。図C(2)はuv=wの共線図表である。基本型〔2〕は、両辺の対数をとればlogf1(u)+logf2(v)=logf3(w)となるから、対数尺を利用することによって基本型〔1〕の共線図表にすることもできる。

基本型〔3〕 1/{f1(u)}+1/{f2(v)}+1/{f3(w)} 三交線型図表といわれる。図D(1)のように、1点Oから出る3本の直線を引き、Ox上にはx=mf1(u)、Oy上にはy=nf2(v)を目盛る。次にOx上にz′=mf3(w)を目盛ってから、その目盛りをOyに平行な直線によってOz上に射影してOz上に目盛る。するとu、v、wの間に基本型〔3〕の関係式が成り立つ。ここでm=nと置けば、OzはOxとOyのつくる角の二等分線となる。レンズの公式

の共線図表は、∠xOy=120゜Ozをその二等分線とすれば、すべての軸の目盛りは同じになり、図D(2)のようになる。

[片野善一郎]

計算図表の歴史

共線図表は、1884年、フランスのエコール・ポリテクニクの教授で工学者・数学者であったモーリス・ドカーニュMaurice d'Ocagne(1862―1938)によって創案されたもので、彼はこのような図表をノモグラムnomogram、それを対象とする学問をノモグラフィnomographyとよんだ。計算図表学は公式の図示法を研究する応用数学の一分科として始められたものであるが、一度つくっておけば永久的に反復使用できる便利さがあるので、微積分の計算や定型の代数方程式、微分方程式の解の算出などにも利用され、理工学はもちろん、医学や経済学など広範囲の分野で活用されるようになった。

[片野善一郎]

『小倉金之助著『計算図表』(1940・岩波全書)』

共点図表〔図A〕
©Shogakukan">

共点図表〔図A〕

共線図表の基本型〔1〕〔図B〕
©Shogakukan">

共線図表の基本型〔1〕〔図B〕

共線図表の基本型〔2〕〔図C〕
©Shogakukan">

共線図表の基本型〔2〕〔図C〕

共線図表の基本型〔3〕〔図D〕
©Shogakukan">

共線図表の基本型〔3〕〔図D〕


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Computer control

>>:  Financial statement supplementary statement

Recommend

Keiji Goto

Year of death: February 3, 1919 Year of birth: Oct...

Index librorum prohibitorum (English notation) Index librorum prohibitorum

…the term refers to the catalog of books that the...

Quechua - Quechua (English spelling)

Quechua-speaking people who live in the Andes Mou...

Nguyen Nhac - Nguyen Nhac

In 1771, together with his two elder brothers, he...

Nankaido - Nankaido

In ancient times, this was an administrative regi...

Zanzibar - Zanzibar (English spelling)

A region in East Africa, located in the Indian Oc...

Iron seat

A monopoly on iron and pig iron during the Edo pe...

Propeller ship - Propelasen

A ship that moves in the air using propellers sim...

Újvidek (English spelling) Ujvidek

...Population: 180,000 (1991). Hungarian name: Új...

Fairy tale play - Otogi Shibai

…Similar things can be found in countries around ...

Baby - Baby

...The spore print is dark purple-brown. It is wi...

Ciliata

...The most well-known are the malaria parasite P...

Kozagawa [town] - Kozagawa

A town in Higashimuro County in the southeastern p...

Bushel (English spelling)

A unit of volume in the imperial system. The symbo...

Tarle, Evgenii Viktorovich

Born: November 8, 1875 in Kyiv Died January 5, 195...