Curved surface

Japanese: 曲面 - きょくめん
Curved surface

From the standpoint of analysis, surfaces such as spheres, cylinders, cones, quadric surfaces, and spiral surfaces have points whose coordinates are continuous functions of two real variables u and v.

A surface is given as follows. A surface can also be expressed as
F(x,y,z)=0 (1)
It may also be given in the form of an implicit function, such as
z=f(x,y) (2)
In order for (1) to be able to be solved for a certain variable as in (2), any of the partial derivatives F x , F y , or F z must not be zero. Such points are called regular points, but for non-regular points, the surface will exhibit complex behavior in its vicinity, like singular points in the case of curves. At a point P(a,b,c) on the surface, the plane determined by three points P 1 , P 2 , and P on the surface taken near P, the limit plane as P 1 and P 2 approach P is called the tangent plane at P. The equation is
Fx (xa)+ Fy (yb)+ Fz (zc)=0
or,
zc= fx (xa)+ fy (yb)
etc.

[Osamu Takenouchi]

Area

The area of ​​a curved surface, or curvature, is given as the sum of the areas of the small parts that are created by dividing the surface into smaller parts. The area of ​​each small part is approximated by the area of ​​the orthogonal projection onto the tangent plane at one point of the small part. The formula for this is:

or

It will take the following form:

[Osamu Takenouchi]

From a topology standpoint, planes, spheres, and triangles are all topological spaces known as surfaces. Surfaces can be divided into those that extend infinitely, such as planes and infinitely long cylinders, i.e., non-compact, and those that are compact, such as spheres and disks (compact means a bounded closed set). Among compact surfaces, a disk has its circumference as its boundary, and a torus, which is a disk with a hole in it, has its inner and outer circumferences as its boundaries. In contrast, a sphere and a torus are surfaces without boundaries, and are called closed surfaces.

Closed surfaces include the sphere, the torus, and the biscuit surface with two holes ( Figure A ). A torus is a sphere with two circular holes and the top and bottom circumferences of a cylinder attached to them. In other words, it can be considered a surface with a handle attached to a sphere ( Figure B ). Similarly, a biscuit surface with two holes is a sphere with two handles attached to it. In this way, a surface with n holes is created with n handles attached to a sphere. A surface created in this way is called a closed unsigned surface. In contrast, if a sphere is made with a circular hole and the circumference of the boundary of a Möbius strip is attached to it, a surface called a projective plane is created ( Figure C ). In general, a closed surface created by making n circular holes in a sphere and attaching the boundaries of n Möbius strips ( Figure D ) to each of them is called a closed unsigned surface.

Any closed surface is the same topology as any of the closed surfaces constructed as above, but surfaces with different numbers of attached handles or Möbius strips are not the same topology as each other (Fundamental Theorem of the Topology of Closed Surfaces). A closed surface with no sign has the property that if a small disk is moved along an arbitrary path, the disk will reverse direction after one revolution, just like a Möbius strip. Also, a closed surface with no sign can never enter three-dimensional space without intersecting with itself.

[Hiroshi Noguchi]

[Reference] | Möbius strip
Curved surfaces (spheres, torus, biscuit surfaces) [Figure A]
©Takashi Aoki

Surfaces (spheres, tori, biscuit surfaces) […

Curved surface (ring surface) (Figure B)
©Takashi Aoki

Curved surface (ring surface) (Figure B)

Curved surface (projective plane) (Fig. C)
©Takashi Aoki

Curved surface (projective plane) (Fig. C)

Curved surface (Möbius strip) [Fig. D]
©Takashi Aoki

Curved surface (Möbius strip) [Fig. D]


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

解析学の立場からは、球面、円柱、円錐(えんすい)、二次曲面、螺線(らせん)面などのように、空間内でその点の座標が二つの実変数u、vの連続関数

として与えられているものが曲面である。曲面はまた、
 F(x,y,z)=0 (1)
のように陰関数の形で与えられることもある。あるいは、
 z=f(x,y)  (2)
の形で与えられることも多い。(1)が(2)のようにどれかの変数について解いた形にできるためには、偏導関数Fx、Fy、Fzのどれかが0でなければよい。このような点は正則点とよばれるが、非正則点においては、曲線の場合の特異点のように、その近くで曲面は複雑な様相を示す。曲面上の1点P(a,b,c)において、Pの近くにとった曲面上の点P1、P2とPの3点によって決まる平面で、P1、P2をPに近づけた極限の平面をPにおける接平面という。その方程式は、
 Fx(x-a)+Fy(y-b)+Fz(z-c)=0
あるいは、
 z-c=fx(x-a)+fy(y-b)
などで表される。

[竹之内脩]

曲面積

曲面の面積、すなわち曲面積は、曲面を細かに分割してできる各小部分の面積の総和として与えられる。各小部分の面積は、その中の1点における接平面への正射影の面積で近似して測る。これを表す式は、

あるいは

などの形になる。

[竹之内脩]

 トポロジーの立場からいえば、平面、球面、また三角形などは、すべて曲面とよばれる位相空間となる。曲面はまず、平面や無限に長い円柱面などのように無限に伸びるもの、すなわちコンパクトでないものと、球面や円板などのように、コンパクトなものに分けられる(コンパクトは、有界な閉集合のこと)。そしてコンパクトな曲面のうち、円板はその円周が境界となっているし、円板に一つ穴をあけた円環面は内外の円周がその境界となっている。これに反して球面や輪環面(トーラス)は境界のない曲面であり、閉曲面という。

 閉曲面としては、まず球面や輪環面や二つの穴あきのビスケット曲面などがある(図A)。輪環面は、球面に二つの円板の穴をあけ、これに円柱の上下の円周を貼(は)り付けたものである。すなわち球面に一つのハンドルを取り付けた曲面とみられる(図B)。同様に二つの穴あきのビスケット曲面は、球面に二つのハンドルを取り付けたものである。このようにして球面にn個のハンドルを取り付けた、n個の穴あきの曲面ができる。こうしてできる曲面は可符号閉曲面とよばれる。これに反して、球面に一つの円板の穴をあけ、これにメビウスの帯の境界の円周を貼り付けると、射影平面とよばれる曲面ができる(図C)。一般に球面にn個の円板の穴をあけて、それぞれにn個のメビウスの帯(図D)の境界を貼り付けてできる閉曲面を不可符号の閉曲面という。

 任意の閉曲面は、前記のように構成される閉曲面のいずれか一つと同位相であり、貼り付けるハンドルまたはメビウスの帯の個数が異なるものは互いに同位相とはならない(閉曲面の位相幾何の基本定理)。不可符号の閉曲面は、メビウスの帯と同じように、適当な道に沿って小円板を動かすと、1周したあとに円板の向きが逆転するという性質をもっている。また、不可符号の閉曲面はけっして三次元空間へ自分自身と交わることなく入ることはできない。

[野口 廣]

[参照項目] | メビウスの帯
曲面(球面、輪環面、ビスケット曲面)〔図A〕
©青木 隆">

曲面(球面、輪環面、ビスケット曲面)〔…

曲面(輪環面)〔図B〕
©青木 隆">

曲面(輪環面)〔図B〕

曲面(射影平面)〔図C〕
©青木 隆">

曲面(射影平面)〔図C〕

曲面(メビウスの帯)〔図D〕
©青木 隆">

曲面(メビウスの帯)〔図D〕


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Gyokumon

>>:  Arctic art (English: Arctic art)

Recommend

Mordant - Mordant

A chemical used in the mordant method to fix dyes...

Flüe, N.von (English spelling) FlueNvon

…However, in 1974, women were granted suffrage, a...

Hales, S.

… In the 18th century, the study of gases made re...

corpuscles

…Boyle, the founder of modern chemistry, did not ...

Advertorial

Advertisement is a type of advertising that is wri...

Meken

…Here, I would like to explore the cultural and s...

Kodkod - Kodokod (English spelling)

The smallest carnivorous mammal of the Felidae fam...

Teleogryllus yezoemma (English spelling) Teleogryllusyezoemma

…[Yamazaki Harane]. … *Some of the terminology th...

Gigi - Gigi

A freshwater fish belonging to the order Silurifo...

Pereda

Spanish author. A typical regional novelist, he ex...

Umewaka Rokuro - Umewaka Rokuro

The common name of the head of the Umewaka family...

Tsumugi

Silk fabric woven with tsumugi thread. Tsumugi th...

American badger

It is an animal of the Mustelidae family in the C...

Baciccia, Giovanni Battista

Born: May 8, 1639, Genoa Died: April 2, 1709. Ital...

Ongai (abalone)

...A general term for three large species of snai...