From the standpoint of analysis, surfaces such as spheres, cylinders, cones, quadric surfaces, and spiral surfaces have points whose coordinates are continuous functions of two real variables u and v. [Osamu Takenouchi] Area The area of a curved surface, or curvature, is given as the sum of the areas of the small parts that are created by dividing the surface into smaller parts. The area of each small part is approximated by the area of the orthogonal projection onto the tangent plane at one point of the small part. The formula for this is: [Osamu Takenouchi] From a topology standpoint, planes, spheres, and triangles are all topological spaces known as surfaces. Surfaces can be divided into those that extend infinitely, such as planes and infinitely long cylinders, i.e., non-compact, and those that are compact, such as spheres and disks (compact means a bounded closed set). Among compact surfaces, a disk has its circumference as its boundary, and a torus, which is a disk with a hole in it, has its inner and outer circumferences as its boundaries. In contrast, a sphere and a torus are surfaces without boundaries, and are called closed surfaces. Closed surfaces include the sphere, the torus, and the biscuit surface with two holes ( ). A torus is a sphere with two circular holes and the top and bottom circumferences of a cylinder attached to them. In other words, it can be considered a surface with a handle attached to a sphere ( ). Similarly, a biscuit surface with two holes is a sphere with two handles attached to it. In this way, a surface with n holes is created with n handles attached to a sphere. A surface created in this way is called a closed unsigned surface. In contrast, if a sphere is made with a circular hole and the circumference of the boundary of a Möbius strip is attached to it, a surface called a projective plane is created ( ). In general, a closed surface created by making n circular holes in a sphere and attaching the boundaries of n Möbius strips ( ) to each of them is called a closed unsigned surface.Any closed surface is the same topology as any of the closed surfaces constructed as above, but surfaces with different numbers of attached handles or Möbius strips are not the same topology as each other (Fundamental Theorem of the Topology of Closed Surfaces). A closed surface with no sign has the property that if a small disk is moved along an arbitrary path, the disk will reverse direction after one revolution, just like a Möbius strip. Also, a closed surface with no sign can never enter three-dimensional space without intersecting with itself. [Hiroshi Noguchi] [Reference] |©Takashi Aoki Surfaces (spheres, tori, biscuit surfaces) [… ©Takashi Aoki Curved surface (ring surface) (Figure B) ©Takashi Aoki Curved surface (projective plane) (Fig. C) ©Takashi Aoki Curved surface (Möbius strip) [Fig. D] Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
解析学の立場からは、球面、円柱、円錐(えんすい)、二次曲面、螺線(らせん)面などのように、空間内でその点の座標が二つの実変数u、vの連続関数 [竹之内脩] 曲面積曲面の面積、すなわち曲面積は、曲面を細かに分割してできる各小部分の面積の総和として与えられる。各小部分の面積は、その中の1点における接平面への正射影の面積で近似して測る。これを表す式は、 [竹之内脩] トポロジーの立場からいえば、平面、球面、また三角形などは、すべて曲面とよばれる位相空間となる。曲面はまず、平面や無限に長い円柱面などのように無限に伸びるもの、すなわちコンパクトでないものと、球面や円板などのように、コンパクトなものに分けられる(コンパクトは、有界な閉集合のこと)。そしてコンパクトな曲面のうち、円板はその円周が境界となっているし、円板に一つ穴をあけた円環面は内外の円周がその境界となっている。これに反して球面や輪環面(トーラス)は境界のない曲面であり、閉曲面という。 閉曲面としては、まず球面や輪環面や二つの穴あきのビスケット曲面などがある( )。輪環面は、球面に二つの円板の穴をあけ、これに円柱の上下の円周を貼(は)り付けたものである。すなわち球面に一つのハンドルを取り付けた曲面とみられる( )。同様に二つの穴あきのビスケット曲面は、球面に二つのハンドルを取り付けたものである。このようにして球面にn個のハンドルを取り付けた、n個の穴あきの曲面ができる。こうしてできる曲面は可符号閉曲面とよばれる。これに反して、球面に一つの円板の穴をあけ、これにメビウスの帯の境界の円周を貼り付けると、射影平面とよばれる曲面ができる( )。一般に球面にn個の円板の穴をあけて、それぞれにn個のメビウスの帯( )の境界を貼り付けてできる閉曲面を不可符号の閉曲面という。任意の閉曲面は、前記のように構成される閉曲面のいずれか一つと同位相であり、貼り付けるハンドルまたはメビウスの帯の個数が異なるものは互いに同位相とはならない(閉曲面の位相幾何の基本定理)。不可符号の閉曲面は、メビウスの帯と同じように、適当な道に沿って小円板を動かすと、1周したあとに円板の向きが逆転するという性質をもっている。また、不可符号の閉曲面はけっして三次元空間へ自分自身と交わることなく入ることはできない。 [野口 廣] [参照項目] |©青木 隆"> 曲面(球面、輪環面、ビスケット曲面)〔… ©青木 隆"> 曲面(輪環面)〔図B〕 ©青木 隆"> 曲面(射影平面)〔図C〕 ©青木 隆"> 曲面(メビウスの帯)〔図D〕 出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
>>: Arctic art (English: Arctic art)
A chemical used in the mordant method to fix dyes...
…However, in 1974, women were granted suffrage, a...
… In the 18th century, the study of gases made re...
…Boyle, the founder of modern chemistry, did not ...
Advertisement is a type of advertising that is wri...
…Here, I would like to explore the cultural and s...
The smallest carnivorous mammal of the Felidae fam...
…[Yamazaki Harane]. … *Some of the terminology th...
A freshwater fish belonging to the order Silurifo...
Spanish author. A typical regional novelist, he ex...
The common name of the head of the Umewaka family...
Silk fabric woven with tsumugi thread. Tsumugi th...
It is an animal of the Mustelidae family in the C...
Born: May 8, 1639, Genoa Died: April 2, 1709. Ital...
...A general term for three large species of snai...