An important special function in analysis. In 1929, L. Euler introduced the following infinite product for complex numbers z in relation to definite integrals. AM Legendre named this the gamma function and used the symbol Γ( z ). The above equation is identical to , but if further rewritten, it can be transformed into the following Weierstrass standard form. Here, is Euler's constant. As can be seen from the Weierstrass standard form, the Γ function has first-order poles at z = 0, -1, -2, ... and is analytical elsewhere. Source: Heibonsha World Encyclopedia, 2nd Edition Information |
解析学で重要な特殊関数。1929年,L.オイラーは定積分に関連して,次の無限乗積を複素数zに対し導入した。これをA.M.ルジャンドルが,ガンマ関数と命名し,記号Γ(z)を用いた。上の式は,と一致するが,さらに書き直せば,次のワイヤーシュトラスの標準形に変形できる。ここに,は,オイラーの定数である。ワイヤーシュトラスの標準形からわかるように,Γ関数はz=0,-1,-2,……で1位の極をもち,その他では解析的になる。
出典 株式会社平凡社世界大百科事典 第2版について 情報 |
...When this solution is treated with alkali or a...
A species of green algae in the family Polypodium,...
Hindu caves on Elephanta Island in Mumbai (Bombay)...
...an ethnic group living in the area of West A...
A variety of rice. Developed by crossbreeding &quo...
...Semantics in this case is part of lexicology. ...
Since ancient Greece and Rome, justice has been c...
...Mande languages have a large number of speak...
A country in the western part of Western Asia, on...
It refers to a continuous protruding part of a mo...
...This is linked to research into the attitudes ...
…It is effective for mild ovulation disorders suc...
...This method is used when conducting a new tria...
1912‐95 Canadian critic. Educated in Britain, he b...
An order issued by a court to authorize an adminis...