Buffer solution

Japanese: 緩衝溶液 - かんしょうようえき(英語表記)buffer solution
Buffer solution

The effect of reducing the change in hydrogen ion concentration that occurs when an acid or base is added to a solution is called a buffer effect, and a solution that has this buffer effect is called a buffer solution or buffer solution.

In 1909, Danish biochemist Søren Peter Lauritz Sørensen (1868-1939) was the first to discover that mixed solutions of hydrochloric acid, sodium hydroxide, glycine, phosphoric acid, citric acid, boric acid, and their salts had a buffering effect, and created a buffer solution. Generally, it refers to a mixed solution of a weak acid and its salt, or a weak base and its salt, and is used when the hydrogen ion exponent (pH) of the solution must be kept constant. Some types of buffer solutions are also used as pH standard solutions when measuring pH.

Let us take the example of a buffer solution formed by a mixture of acetic acid (CH 3 COOH) and sodium acetate (CH 3 COONa). For acetic acid, the dissociation equilibrium shown in equation (1) holds.


Acetic acid is a weak acid, so the degree of ionization is small, and the concentration of acetate ions, CH 3 COO - , is very small compared to acetic acid. On the other hand, sodium acetate is a strong electrolyte, so it dissociates completely as shown in equation (2).


Therefore, when these two solutions are mixed, the acetate ion concentration in the solution is almost entirely made up of those produced by sodium acetate. When an acid such as hydrochloric acid is added to this solution, the hydrogen ions H + of the hydrochloric acid react with the large amount of acetate ions produced in the solution to produce acetic acid, and the reaction in equation (1) proceeds from right to left, so the hydrogen ion concentration in the solution hardly changes and the pH remains constant. When a base such as sodium hydroxide is added, the H + in the solution and the OH - of the base neutralize to produce H 2 O, but the reaction in equation (1) proceeds from left to right to compensate for the consumption of H + , so the hydrogen ion concentration in the solution remains almost constant and the pH hardly changes. In this way, a buffer solution has the ability to not change the pH of a solution much even when an acid or base is added, and this ability is called buffer capacity. A good buffer solution can be said to have high buffer capacity and can cover a wide pH range by changing its composition.

To prepare a buffer solution, a reagent must be selected that will buffer the desired pH range. Since there is sufficient buffering capacity in a pH range of 0.5 pH units around the pK a of the acid ( K a is the acid dissociation constant; like pH, pK a is the logarithm of the reciprocal of K a ), the desired buffer solution can be easily selected from the pK a value of the acid. The acid-base reagents used to prepare buffer solutions and their pK a values ​​are shown in Table 1 .

Ammonia (NH3 ) is usually defined as having a base dissociation constant Kb : NH4OHNH4 + + OH-
The equilibrium is established,
K b = [NH 4 + ][OH - ]/[NH 4 OH]
On the other hand, the conjugate acid NH 4 + dissociates by hydrolysis as follows:

NH4 + + H2ONH4OH + H +
This hydrolysis constant is expressed as K h ,
K h = [NH 4 OH][H + ]/[NH 4 + ]
However, the concentration of water is included in the equilibrium constant. In other words, if the equilibrium constant is K , then K h = K [H 2 O]
Multiply the denominator of the formula for K h by [OH - ], and the ionic product of water is K w = [H + ][OH - ]
Considering this, the above formula becomes K h = K w / K b . In acid-base theory, K a · K b = K w , so the hydrolysis constant defined here is the acid dissociation constant of the NH 4 + ion, which is the conjugate acid of the base NH 3. In this way, the base dissociation constant can be calculated if the acid dissociation constant of its conjugate acid is given, and it is sometimes unified and expressed as the acid dissociation constant. However, it should be noted that the temperature is 25°C and the ionic strength is 0 mol · dm -3 .

The standard pH solutions are buffer solutions. The most commonly used acidic, neutral, and alkaline standard solutions are shown in Table 2 .

The standard definition of pH is pH = -log a (H 3 O + ), but since it is not possible to measure this value precisely, the measurable pH is now defined as follows. For each of two solutions with pH(s) and pH(x),

When two batteries are constructed and the electromotive forces are E (s) and E (x), respectively, ΔpH is defined by the following equation:


Here, R is the gas constant, T is the absolute temperature, and F is the Faraday constant. This definition means that "when the electromotive force of the battery of formula (3) is measured for two solutions using a hydrogen electrode and a reference electrode such as a calomel (mercury chloride (I)) electrode, if the difference in electromotive force is equal to F /2.3026 RT , the difference in pH between the solutions is 1.000." In other words, since the definition of formula (4) only defines the difference in pH, it is necessary to determine the origin of pH. Currently, the origin is globally adopted as "the pH of a 0.05 mol kg -1 (molar concentration) potassium hydrogen phthalate solution at 15°C is 4.000," but in Japan's JIS (Japanese Industrial Standards), the solution concentration of this origin is 0.05M (= mol l -1 , molar concentration by volume). However, the difference between the two is at most 0.0009 pH, which is not a problem in practice.

There are also buffer solutions named after people. Table 3 shows the composition and buffer pH range of representative buffer solutions.

[Yoshio Narusawa]

"Selection and Application of Buffer Solutions: Hydrogen Ions and Metal Ions" by Douglas Dalzell Perrin and Boyd Dempsey, translated by Keiichi Tsuji (1981, Kodansha)""Handbook of Analytical Chemistry, 3rd revised edition (1981, Maruzen) edited by the Japan Society for Analytical Chemistry""Handbook of Chemistry: Basics", 4th revised edition (1993, Maruzen) edited by the Chemical Society of Japan" ▽ "Guide to Physical Chemistry Experiments" edited by Ginya Adachi, Yasutaka Ishii, and Gohiro Yoshida (1993, Kagaku Dojin)""Basic Analytical Chemistry, revised new edition by Kosuke Izutsu, Tomotaka Hori, Masato Sugiyama, Kaoru Fujinaga, and Taichiro Fujinaga (1994, Asakura Shoten)""Quantitative Analysis" edited by the Japan Society for Analytical Chemistry (1994, Asakura Shoten)""P. Ritter, translated by Kazuo Sudo, Keiichi Yamamoto, and Fumio Arisaka, 'Ritter's Biochemistry' (1999, Tokyo Kagaku Dojin)""Kunihiko Mizumachi, 'Acids and Bases' (2003, Shokabo)""Yasuo Morimoto, 'The pH: What's yours?' (2003, Shinpusha)"

[References] | Salts | Bases | Dissociation | Chemical equilibrium | Conjugate bases | Acetic acid | Sodium acetate | Acids | Reagents | Hydrogen ion concentration | pH adjustment | Molarity
pka values ​​of major acids or conjugate acids (Table 1)
is the acid dissociation constant in an aqueous solution, and in principle, the value is at 25°C and ionic strength 0 mol dm. For bases, the acid dissociation constant is given as the acid dissociation constant of its conjugate acid. The Roman numerals I, II, and III in parentheses represent the first, second, and third dissociation, respectively .

The pka values ​​of major acids or conjugate acids (Table 1)

Main standard solutions (Table 2)
©Shogakukan ">

Main standard solutions (Table 2)

Composition and pH range of major buffer solutions [Table 3]
The numbers in parentheses for solutions A and B are the concentrations C/mol dm . ©Shogakukan

Composition and pH range of major buffer solutions (Table 3)


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

溶液に酸または塩基を加えた場合におこる水素イオン濃度の変化を小さくする作用を緩衝作用といい、この緩衝作用をもつ溶液を緩衝溶液あるいは緩衝液という。

 1909年デンマークの生化学者セーレンセンSøren Peter Lauritz Sørensen(1868―1939)が、塩酸、水酸化ナトリウム、グリシンのほか、リン酸、クエン酸、ホウ酸などとその塩の混合溶液が緩衝作用をもつことを初めてみいだし、緩衝溶液をつくった。一般に弱酸とその塩、あるいは弱塩基とその塩の混合溶液をいい、溶液の水素イオン指数pHを一定に保つ必要がある場合に用いる。またある種の緩衝溶液はpH測定の際のpH標準溶液として用いられる。

 酢酸CH3COOHおよび酢酸ナトリウムCH3COONaの混合溶液で生じる緩衝溶液を例にとる。酢酸については式(1)の解離平衡が成り立つ。


 酢酸は弱酸なので電離度が小さく、酢酸イオンCH3COO-の濃度は酢酸に比べて非常に小さい。一方、酢酸ナトリウムは強電解質なので式(2)のように完全解離する。


 したがって、この二つの溶液を混合すると、溶液中の酢酸イオン濃度は、ほぼ酢酸ナトリウムから生じたもので占められる。この溶液に塩酸のような酸を加えると、溶液中に生じている大量の酢酸イオンと反応して、加えられた塩酸の水素イオンH+は酢酸を生成し、式(1)の反応は右から左へ進むので、溶液中の水素イオン濃度はほとんど変化せず、pHは一定に保たれる。また、水酸化ナトリウムのような塩基を加えると、溶液中のH+と塩基のOH-とが中和してH2Oを生成するが、式(1)の反応が左から右に進み、H+の消費を補うので、溶液中の水素イオン濃度はほぼ一定に保たれ、pHはほとんど変化しないことになる。このように緩衝溶液は酸や塩基を加えても、溶液のpHをあまり変化させない能力をもち、このような能力を緩衝能という。優れた緩衝溶液は高い緩衝能をもつということができ、また組成を変化させて広いpH領域をカバーできるものであるということができる。

 緩衝液を調製するには目的のpH領域を緩衝する試薬を選ばなければならない。酸のpKaKaは酸解離定数。pKaはpHと同じくKaの逆数の対数を表す)を中心にして前後0.5pH単位のpH範囲で十分な緩衝能があるので、酸のpKa値から目的の緩衝液を容易に選ぶことができる。緩衝液を調製するのに用いられる酸塩基試薬とpKa値を表1に示す。

 アンモニアNH3は普通、塩基解離定数Kbが定義されている。すなわち
  NH4OHNH4++OH-
の平衡が成り立ち、
  Kb=[NH4+][OH-]/[NH4OH]
である。一方、共役酸NH4+は次のように加水解離する。

  NH4++H2ONH4OH+H+
 この加水分解定数をKhと表すと、
  Kh=[NH4OH][H+]/[NH4+]
となる。ただし水の濃度は平衡定数に含めた。すなわち平衡定数をKとすると
  KhK[H2O]
である。Khの式の分母子に[OH-]を掛け、水のイオン積が
  Kw=[H+][OH-]
であることを考慮すると、上式はKhKw/Kbとなる。酸塩基理論ではKaKbKwであるから、ここで定義した加水分解定数は塩基NH3の共役酸であるNH4+イオンの酸解離定数である。このようにして塩基もその共役酸の酸解離定数が与えられれば塩基解離定数が求められることになり、酸解離定数で統一して表すことがある。ただし、25℃、イオン強度0mol・dm-3であることに注意すべきである。

 pHの標準となる溶液は緩衝溶液である。現在もっともよく使われる酸性、中性、アルカリ性の標準溶液を表2に示す。

 pHの標準については、定義はpH=-loga(H3O+)であるが、その値を厳密に測定することができないので、現在では次の方法で測定可能なpHを定義している。pH(s)とpH(x)の二つの溶液のそれぞれについて

の電池をつくり、その起電力の値がそれぞれE(s)とE(x)であるとき、次式でΔpHを定義する。


 ここで、Rは気体定数、Tは絶対温度、Fはファラデー定数である。この定義は「水素電極と甘汞(かんこう)(塩化水銀(Ⅰ))電極などの参照電極とを用いて(3)式の電池の起電力を二つの溶液について測定したとき、その起電力の差がF/2.3026RTに等しければ、その溶液間のpHの差は1.000である」ということになる。つまり、(4)式の定義は単にpHの差を定義したにすぎないから、pHの原点を決める必要がある。現在、この原点として、「0.05mol・kg-1(重量モル濃度)のフタル酸水素カリウム水溶液の15℃におけるpHを4.000とする」というのが世界的に採用されているが、日本のJIS(日本工業規格)ではこの原点の溶液濃度を0.05M(=mol・l-1。容量モル濃度)としている。ただし、その両者の差はせいぜい0.0009pH程度で、実用的には問題ない。

 なお、人名の付いた緩衝液が知られている。表3に代表的な緩衝液の組成と緩衝pH領域を示す。

[成澤芳男]

『ダグラス・ダルゼル・ペリン、ボイド・デンプシ著、辻啓一訳『緩衝液の選択と応用 水素イオン・金属イオン』(1981・講談社)』『日本分析化学会編『分析化学便覧』改訂3版(1981・丸善)』『日本化学会編『化学便覧 基礎編』改訂4版(1993・丸善)』『足立吟也・石井康敬・吉田郷弘編『物理化学実験のてびき』(1993・化学同人)』『伊豆津公佑・堀智孝・杉山雅人・藤永薫著、藤永太一郎編著『基礎分析化学』改訂新版(1994・朝倉書店)』『日本分析化学会編『定量分析』(1994・朝倉書店)』『P・リッター著、須藤和夫・山本啓一・有坂文雄訳『リッター生化学』(1999・東京化学同人)』『水町邦彦著『酸と塩基』(2003・裳華房)』『森本安夫著『ザ・ペーハー あなたのはいくつ?』(2003・新風舎)』

[参照項目] | | 塩基 | 解離 | 化学平衡 | 共役塩基 | 酢酸 | 酢酸ナトリウム | | 試薬 | 水素イオン濃度 | pH調節 | モル濃度
おもな酸または共役酸のpkaの値〔表1〕
は水溶液中の酸解離定数で、原則として25℃、イオン強度0mol・dmの値である。塩基についてはその共役酸の酸解離定数で与えてある。( )内のローマ数字Ⅰ、Ⅱ、Ⅲはそれぞれ第一、第二、第三解離を表す©Shogakukan">

おもな酸または共役酸のpkaの値〔表1…

おもな標準溶液〔表2〕
©Shogakukan">

おもな標準溶液〔表2〕

おもな緩衝液の組成と緩衝pH領域〔表3〕
A、B液の( )内は濃度C/mol・dm©Shogakukan">

おもな緩衝液の組成と緩衝pH領域〔表3…


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Emotional theory - Kanjoron

>>:  Interference spectroscopy

Recommend

Sputum test - Kakutankensa

A test to diagnose lung diseases such as pulmonary...

Paris Opera Ballet

A ballet company affiliated with the Paris Opera. ...

RNA dependent DNA polymerase

Also called reverse transcriptase. An enzyme that ...

Alcazar (English spelling)

…The representative buildings of this culture are...

Yerushalayim

…the central city of the Palestinian region. It i...

Ramp

…When expressways intersect or connect with each ...

Wales - Wales (English spelling)

A peninsula-like region in the southwest of Great...

Paleosoil - Kodojo

Soil that was formed in geologically ancient time...

Kyogen Furyu

...Especially after the Onin War, Noh plays such ...

chiliasm

…It can also be used to refer to an ideal world, ...

Antieta, J.de - Antieta

...The most important song composer of this perio...

Montenegro - Montenegro (English spelling)

A republic located in the southeastern part of Eu...

Gentiana thunbergii (English name) Gentiana thunbergii

… [Toyokuni Hideo]. … *Some of the terminology th...

Joseph, S.

...It was only in the 20th century that it starte...

Payment - Harai

To pay a price or fee. Payment It's tiring.&qu...