Blaschke, W.

Japanese: Blaschke,W.(英語表記)BlaschkeW
Blaschke, W.

...After this, in the 19th century, O. Bonnet (1819-92), E. Beltrami (1835-1900), MS Lee, JG Darboux and others found many interesting results about curves and surfaces in Euclidean space. In the 20th century, influenced by Klein's ideas, G. Fubini and others studied projective differential geometry, which uses differential calculus to study the invariant properties of curves and surfaces in projective spaces under projective transformations, and W. Blaschke (1885-1962) and others studied similar differential geometry for various other spaces.
[Riemannian Geometry]
The distance ds between two infinitely close points on a surface represented by parameters u and v , i.e., ( u , v ) and ( u + du , v + dv ), is given by ds 2 = Edu 2 + 2 Fdudv + Gdv 2.

*Some of the terminology that mentions "Blaschke, W." is listed below.

Source | Heibonsha World Encyclopedia 2nd Edition | Information

Japanese:

…この後,19世紀にはボネO.Bonnet(1819‐92),ベルトラミE.Beltrami(1835‐1900),M.S.リー,J.G.ダルブーらによって,ユークリッド空間における曲線や曲面についての多くの興味ある結果が見いだされた。20世紀に入ると,クラインの思想の影響を受けて,射影空間の曲線や曲面の射影変換で不変な性質を微分学を用いて研究する射影微分幾何学がフビニG.Fubiniらによって研究され,その他のいろいろな空間に対しても同様の微分幾何学がブラシュケW.Blaschke(1885‐1962)らによって研究された。
[リーマン幾何学]
 媒介変数u,vを用いて表された曲面上の無限に近い2点,すなわち(u,v)と(udu,vdv)に対応する曲面上の2点間の距離dsは,ds2Edu2+2FdudvGdv2という形で与えられる。…

※「Blaschke,W.」について言及している用語解説の一部を掲載しています。

出典|株式会社平凡社世界大百科事典 第2版について | 情報

<<:  Blasetti, A.

>>:  white

Recommend

Misonoza - Misonoza

This theater is located in Sakae, Naka Ward, Nago...

Walpurgis

...It has been the setting for many folk tales si...

Sakuhiko Shuryo - Sakugen Shuryo

A monk of the Muso school of the Rinzai sect in t...

Allelomorph

...To clarify this issue, in 1911, WL Johansen (1...

SLE - System Engineering Lease

Systemic lupus erythematosus Source: About Shogaku...

Japanese giant salamander - Japanese giant salamander

... The genus Ammophila hunts caterpillars, while...

Gita Govinda (English spelling)

An Indian Sanskrit lyric poem. The Japanese transl...

Bongo, Omar

Born December 30, 1935 in Rewa, French Equatorial ...

Mechanism - mechanism English

Regarding the generation and transformation of ev...

That person

[1] [Collocation] ① Refers to a person who was men...

Perilla frutescens var. japonica

It is an annual plant of the Lamiaceae family, nat...

Positional motion

… However, it is the ancient Greek metaphysical s...

Phonological Catechism

…Fleeing the revolution, he transferred to Rostov...

Safety analysis

...The later in the development process safety is...

Dannay, F.

...The pen name of the American mystery writers F...