In quantum theory, especially in early quantum theory, an equation that expresses the relationship between the quantum nature of a certain physical quantity and the Planck constant h . For example, M. Planck expressed the possible mechanical energy of a charged oscillator with frequency ν as ε = nh ν ( n = 0, 1, 2,…) N. Bohr said that the possible values of the angular momentum of the electron in a hydrogen atom are 2πp = nh ( n = 1, 2, 3,…) These are the quantum conditions. AJW Sommerfeld (1913) was able to provide a unified expression for the quantum conditions given to various quantities in various problems. In his expression, the quantum conditions for a system with f degrees of freedom can be expressed as the action integral , ∫ p i d q i = nh ( n = 1, 2, 3,…; i = 1, 2,…, f ) This is called the Sommerfeld quantum condition. In the case of periodic motion, the integral with respect to qi is performed for one cycle. In the case of uniform circular motion, x = a sin(2πν t ) In this case, speed = a (2πν)cos( 2πνt ) Momentum m = ma (2πν)cos( 2πνt ) Therefore, the Sommerfeld quantum condition is ∫ m d x = m a 2 (2 π ν ) 2 ∫ cos 2 (2πν t )d t = m a 2 (2πν)∫ 0 2 π cos 2 y d y = m a 2 (2πν)π = nh On the other hand, the mechanical energy of this system is equal to the kinetic energy at x = 0, so This is equivalent to the quantum condition that Planck originally applied to oscillator energy. In this way, when the quantum nature of certain physical quantities is expressed under quantum conditions, the energy of a system containing those quantities will not be continuous but will have discrete values. Sommerfeld developed this type of theory for the energy levels of atoms. Source: Morikita Publishing "Chemical Dictionary (2nd Edition)" Information about the Chemical Dictionary 2nd Edition |
量子論とくに前期量子論において,ある物理量の量子性とプランク定数hとの結びつきを表す式.たとえば,M. Planck(プランク)は振動数νの荷電振動子のとりうる力学的エネルギーを ε = nhν (n = 0,1,2,…) とし,N. Bohr(ボーア)は水素原子内電子の角運動量のとりうる値は 2π p = nh (n = 1,2,3,…) で定まると考えた.これらが量子条件である.このように,いろいろな問題のなかでいろいろな量に与えられる量子条件にある統一的表現を与えることはA.J.W. Sommerfeld(1913年)によってなされた.かれの表現では,f個の自由度をもつ系の量子条件は一般化座標 qi および共役な一般化運動量 pi により,作用積分, ∫ pidqi = nh (n = 1,2,3,…;i = 1,2,…,f ) で与えられる.これをとくにゾンマーフェルトの量子条件という.周期運動のときは qi に関する積分はその1サイクルにつき行うものとする.等速円運動のときは x = a sin(2πνt) の振動をしているとする.このとき, 速度 = a(2πν)cos(2πνt) 運動量m = ma(2πν)cos(2πνt) である.したがって,ゾンマーフェルトの量子条件は, ∫mdx = ma2 (2πν)2 ∫ cos2(2πνt)dt = ma2(2πν)∫02π cos2ydy = ma2(2πν)π = nh である.一方,この系の力学的エネルギーはx = 0における運動のエネルギーに等しいから, となる.これはPlanckが最初振動子エネルギーに与えた量子条件に等しい.このように,量子条件において,ある物理量の量子性を表しておくと,それらの量を含んだ系のエネルギーが連続でなくとびとびの値になる.Sommerfeldはこのような理論を原子のエネルギー準位について展開した. 出典 森北出版「化学辞典(第2版)」化学辞典 第2版について 情報 |
<<: Quantum number - ryoushisuu (English spelling) quantum number
〘Noun〙 The foundation stone of the central pillar ...
...It is made by dissolving 3-5% of citron-based ...
…A structure in which a steel frame is encased in...
Lake Yamanaka is located in the northwest of Naga...
…Individual cells are slightly curved rod-shaped ...
...As can be seen from the biography, his style i...
...In 1873, the German Hermann Wilhelm Vogel (183...
...Therefore, we obtain a set of continuous funct...
…Epithelial tissue is a concept he established. R...
C 2 H 2 N 4 (82.07). The name of a heterocyclic s...
...In the Kojiki and Nihon shoki, the Yatagarasu ...
…[Murata Gen]. … *Some of the terminology that me...
… [Other European countries] In the Netherlands, ...
Fuji News Network is a commercial news network wit...
...A faction of the Yuan army, consisting mainly ...