Turbulence - Aircraft turbulence

Japanese: 乱気流 - らんきりゅう(英語表記)aircraft turbulence
Turbulence - Aircraft turbulence

This refers to the turbulence experienced by aircraft during flight. When there are various vortices of different sizes with different directions of rotation and axes of rotation in the air flow, the wind is strong when the direction of rotation of the vortex is the same as the basic flow, and weak when the direction is opposite. In this way, the wind fluctuates with different amplitudes and periods.

[Akira Nakayama]

Turbulence Energy

Turbulence energy is the square of the difference (fluctuation) from the time-average wind value, and this turbulence energy is necessary for an aircraft to shake; a light, small aircraft will shake with little energy, while a heavy, large aircraft will not shake unless a large amount of energy is applied. According to turbulence theory, turbulence energy is created by the vertical shear of the base flow (changes in wind in the vertical direction) and the instability of stratification.

Another factor that determines the strength of turbulence is the size of the vortex. Very small vortices have small turbulent energy and act uniformly on the aircraft. Also, vortices much larger than the aircraft will cause no turbulence in either case, as the entire aircraft will be inside the flow. However, when the vortex is somewhat larger than the aircraft, the high flight speed will cause different forces to act on different parts of the aircraft, resulting in complex motion. For current large aircraft, vortices of around 10 meters to 1 kilometer fall into this category. Therefore, for strong turbulence to occur for a large aircraft, the energy of the vortex of this size must be large. For example, in clear air turbulence, the Kelvin-Helmholtz wave (K-H wave, also known as Kelvin-Helmholtz instability wave or K-H instability wave) meets this condition.

[Akira Nakayama]

Turbulence and Windshear

Wind shear is expressed as the amount of change (vector) in wind experienced by an aircraft flying in conditions where there are sudden changes in wind direction and speed in the horizontal and vertical directions. This is related to sudden changes in wind with long-term fluctuations. The relationship between ground speed V G , airspeed V a , and wind vector U is V G =V a +U
The following relationship holds. Since large aircraft have large inertia, even if they encounter a sudden change in wind, their ground speed does not change for a very short time (say Δt), and ΔV G /Δt = 0. Therefore, -(ΔV a /Δt) = ΔU/Δt. If the tailwind increases or the headwind decreases, the right-hand side is positive, so the airspeed decreases, and as a result, the lift also decreases. Also, since the above relationship is a vector, if the aircraft suddenly enters a downdraft region, the aircraft's attitude does not change, but the direction of the airflow changes, so the angle of attack becomes smaller and the lift decreases. Most accidents involving large aircraft are caused by wind shear, and microbursts are one example of this. Winds with short fluctuation periods affect turbulence, and those with long periods are related to lift as wind shear, but these often coexist. Of course, the complex movement of an aircraft due to turbulence also affects lift, but aviation weather does not take that into consideration. As meteorological phenomena, turbulence and wind shear occur as a result of cumulonimbus clouds, clear air turbulence (Kelvin-Helmholtz waves), lee waves (mountain waves), and turbulence caused by low-level terrain. Turbulence also causes aircraft vibrations that not only cause discomfort to passengers but also lead to metal fatigue.

[Akira Nakayama]

"The Science of Weather - Protecting Yourself from Meteorological Disasters" by Yoshimitsu Ogura (1994, Morikita Publishing) " "The Latest Aviation Weather - For Nowcasting Severe Weather" by Akira Nakayama (1996, Tokyodo Publishing) " "Thunderstorms and Mesoscale Weather" by Hisao Ohno (2001, Tokyodo Publishing) " "The ABC of Aviation and Weather, 3rd Edition" by Kimio Kato (2003, Seizando Shoten)

[References] | Vortex | Wind | Air current | Aviation weather | Clear air turbulence | Cumulonimbus | Microburst | Turbulence

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

航空機が飛行中に受ける動揺のこと。大気の流れの中に回転の向き、回転軸の方向の違う大小さまざまな渦があるとき、渦の回転方向と基本流の方向が同じ場合には風は強く、反対だと弱くなる。こうして風は振幅や周期の異なる変動をする。

[中山 章]

乱れのエネルギー

風の時間平均値からの差(変動量)を2乗したものが乱れのエネルギーだが、航空機が揺れるにはこの乱れのエネルギーが必要で、軽い小型機は小さいエネルギーでも揺れ、重い大型機では大きいエネルギーでないと揺れない。乱流理論によれば、乱れのエネルギーは基本流の鉛直シア(鉛直方向での風の変化)と成層の不安定によってつくられる。

 乱気流の強さを決めるもう一つの条件は渦の大きさである。非常に小さい渦は乱れのエネルギーも小さく、機体に一様に作用する。また機体よりもはるかに大きい渦では機体全体が流れの中に入るため、いずれの場合も乱気流はない。しかし、航空機よりある程度大きい渦の場合には、飛行速度が大きいため、航空機の各部に違った力が作用し複雑な運動となる。現用の大型機では10メートル~1キロメートルくらいの渦がこれに該当する。したがって、大型機に対する強い乱気流の発生には、この大きさの渦のエネルギーが大きいことが条件で、たとえば晴天乱気流では、ケルビン‐ヘルムホルツ波Kelvin-Helmholtz wave(K‐H波。ケルビン‐ヘルムホルツ不安定波、K‐H不安定波ともいう)はこの条件を満たしている。

[中山 章]

乱気流とウインドシア

ウインドシアwindshearは水平方向、鉛直方向に風向や風速の急激な変化がある状態の中を飛行する航空機が、単位時間に受ける風の変化量(ベクトル)として表される。これは周期の長い変動をもった風の急変が関係する。対地速度VG、対気速度Va、風ベクトルUの間には
  VG=Va+U
の関係が成り立つ。大型機は大きな慣性をもっているから、風の急変に遭遇してもごく短い時間(Δtとする)は対地速度は変化せず、ΔVG/Δt=0である。したがって、-(ΔVa/Δt)=ΔU/Δtとなる。追い風が増す場合や、向い風が減ずる場合は右辺が正であるから対気速度は減少し、その結果、揚力も減少する。また、前記の関係式はベクトルであるから、突然に下降流域に入ると、航空機の姿勢は変化しないが、気流の方向が変わるので、迎え角は小さくなり揚力は減少する。大型機の事故はウインドシアによるものがもっとも多く、マイクロバーストはその一つである。変動周期の短い風は乱気流に影響し、長いものはウインドシアとして揚力に関係するが、これらは共存していることが多い。もちろん、乱気流による航空機の複雑な運動も揚力に関係するが、航空気象ではそこまでは考えない。気象現象としてみると、乱気流やウインドシアは、積乱雲、晴天乱気流(ケルビン‐ヘルムホルツ波)、風下波(山岳波)、低層地形による乱流に伴って発生する。また、乱気流による航空機の振動は、乗客に不快感を与えるばかりでなく金属疲労の原因にもつながる。

[中山 章]

『小倉義光著『お天気の科学――気象災害から身を守るために』(1994・森北出版)』『中山章著『最新 航空気象――悪天のナウキャストのために』(1996・東京堂出版)』『大野久雄著『雷雨とメソ気象』(2001・東京堂出版)』『加藤喜美夫著『航空と気象ABC』3訂版(2003・成山堂書店)』

[参照項目] | | | 気流 | 航空気象 | 晴天乱気流 | 積乱雲 | マイクロバースト | 乱流

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Rankine - William John Macquorn Rankine

>>:  Rangyoku - Rangyoku

Recommend

Mari - Mari

A republic in northwestern Africa. It borders Alge...

Menzies

Australian politician. He was active in central po...

Show Boat

…She made her Broadway debut in 1912 in The Red P...

uxorilocal

...In contrast, in the case of cousin marriages a...

Tsuchida Bakusen

Japanese painter. Born in Sado, Niigata Prefectur...

Karushima Toyomi Palace - Karushima Toyomi Palace

…The Umayazaka Road is thought to be the predeces...

Criticism of Hu Shi's Thought

After the founding of the People's Republic of...

Eccentric wheel

A device that converts rotary motion into reciproc...

Remains - Iko (English) structure

Among the traces left by humans, those that cannot...

Constitutional Movement (English spelling)

A movement demanding the immediate transition of t...

Suilus bovinus (English spelling) Suilusbovinus

…[Rokuya Imaseki]. . … *Some of the terminology t...

male hermaphroditism

...To transform a person into a woman, the testic...

Okayama First Avenue

An underground shopping mall in Okayama City, Okay...

Political socialization

It refers to the process by which the political c...

Peace, respect, purity and tranquility

This word expresses the spirit of wabi tea perfec...