Falling motion - Rakkyaundo

Japanese: 落下運動 - らっかうんどう
Falling motion - Rakkyaundo

All objects on the ground are subjected to a force toward the center of the Earth due to I. Newton's gravitational force, and if air resistance is ignored, they fall at a constant acceleration g (called gravitational acceleration). This is accelerated motion due to gravitational force, and is also called free fall motion. If an object is allowed to fall freely from a stationary state in space, the speed it will have after a time of t has passed is
dv / dt = acceleration = g
By integrating this, we get v = g t , and the height (distance) that the ball fell is
dh / dt = speed = v = g・t
Therefore, it is given by h = g t 2 /2. This is called the law of falling bodies. Here, the speed that a falling body acquires and the height to which it falls are independent of the mass of the object. Long ago, Aristotle thought that the speed of a falling body was proportional to its mass, but later, Galileo showed that this was incorrect based on an experiment he performed with the Leaning Tower of Pisa (Pisa Cathedral), and established the above law.

When considering the falling of raindrops, air resistance actually comes into play, and this law deviates. It is known that air resistance is proportional to speed when the speed is not very high. In this case, the resistance increases as the falling speed increases, and eventually gravity is cancelled out. At this time, the external forces acting on the raindrop become zero overall, and the speed should be constant. This is called terminal velocity.

Specifically, if the mass of a raindrop is m and the proportionality coefficient of air resistance is α, Newton's equation of motion is
mdv / dt = m g - α v
Therefore, the speed v at which the acceleration, or force, becomes zero is given by m・g/α. The terminal velocity is thought to be reached after a sufficient amount of time has passed, and this can actually be confirmed by integrating the differential equation above. The speed at any time t is
v = m・g/α−( m・g/α− v 0 )・e -α・t / m
where v 0 is the speed at time zero, and e is the base of the natural logarithm, 2.71828.... After enough time has passed ( tm /α), the second term on the right hand side approaches zero, and the speed approaches the terminal velocity mentioned above.

[Yasuhisa Abe]

[Reference] | Motion | Acceleration | Galilei | Natural logarithm | Newton | Universal gravitation

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

地上のすべての物体は、I・ニュートンの万有引力によって地球の中心に向かう力の作用を受けており、空気の抵抗などを無視すると、一定の加速度g(重力加速度という)で落下する。これは万有引力による加速度運動であり、自由落下運動ともいう。空間に静止した状態から自由に落下させた場合、tだけ時間を経たあとで物体がもつ速さは、
  dv/dt=加速度=g
から、これを積分してv=g・tであり、落下した高さ(距離)は、
  dh/dt=速さ=v=g・t
から、h=gt2/2で与えられる。これを落体の法則という。ここで落体が獲得する速さおよび落下する高さは、物体の質量に無関係である。昔、アリストテレスは、落体の速さは落体の質量に比例すると考えたが、のちにガリレイは、ピサの斜塔(ピサ大聖堂)で行った実験をもとにこれが誤りであることを示し、前述の法則を確立した。

 雨滴などの落下を考える場合、実際には空気抵抗が働き、この法則からずれる。速さがあまり大きくないとき、空気抵抗は速さに比例することが知られている。この場合、落下速度が増すほど抵抗が大きくなり、ついには重力を打ち消すことになる。このとき、雨滴に働く外力は全体としてゼロとなり、速さは一定となるはずである。これを終速度という。

 具体的には、雨滴の質量をm、空気抵抗の比例係数をαとすれば、ニュートンの運動方程式は、
  mdv/dtm・g-α・v
であるから、加速度すなわち力がゼロとなる速さvm・g/αで与えられる。終速度は、十分時間が経過したあとで到達すると考えられるが、実際そのことは前記の微分方程式を積分して確かめることができる。任意の時刻tにおける速さは、
  vm・g/α-(m・g/α-v0)・e-α・t/m
で与えられる。ただし、v0は、時刻ゼロにおける速さ、eは自然対数の底で2.71828……である。時間が十分たてば(tm/α)、右辺の第2項はゼロに近づき、速さは前記の終速度に近づく。

[阿部恭久]

[参照項目] | 運動 | 加速度 | ガリレイ | 自然対数 | ニュートン | 万有引力

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Peanut - Arachis hypogaea; peanut

>>:  Lacquer - Lacquer (English spelling)

Recommend

afferent branchial vein

…an organ found only in mollusks such as cephalop...

Namiai [village] - Namiai

A village in Shimoina County in the southwest of N...

ISOS

...The group was comprised mainly of American mar...

"Kyochushu" - Kyochushu

…Among them, the “Shuling-Jing” is particularly f...

Ofrida faction - Ofrida

…He founded a school in Kutmičevičia, Macedonia, ...

Yoon Moon

…Written by Yin Wen, a scholar under Ji Xia durin...

Bradford

A city in the central part of West Yorkshire, in t...

Kuhn Loeb Group

In 1867, German Jews S. Kuhn and A. Loeb founded K...

Combine painting

…He studied at the Academie Julian (Paris, 1947) ...

QWL - Quality of working life

Also known as quality of working life, this is a g...

Declaration of the Rights of the Child

A declaration to protect the human rights of child...

Common carp

…Currently, due to migration, the fish breeds in ...

Obeche - Obeche

...The seeds of the genus Cholera, such as the We...

Arashi Kanjuro - Arashi Kanjuro

A film actor. His real name was Takahashi Teruich...

Oguni-shuku

...A town in Nishiokitama County, in the southwes...