Inflection point

Japanese: 変曲点 - へんきょくてん
Inflection point

It is the point where the curve changes its concave/convex state. A curve y = f ( x ) on the xy plane is convex downward (or concave upward) if the point on the curve between them is always below the line segment P1P2 when a ≦ x ≦ b holds two arbitrary points P1(x1 , f ( x1 ) ) , P2 ( x2 , f ( x2 )) and is always convex upward (or concave downward) if it is always above the line segment P1P2 ( Figure (1)). In this case, f ( x ) is continuous except for x = a , x = b , and has a differential coefficient on one side at each point. Also, if f ″( x ) exists, then y = f ( x ) is convex downward in the interval where f ″( x ) ≧ 0 holds, and is convex upward in the interval where f ″( x ) ≦ 0 holds.

If a curve y = f ( x ) has a point x = c that is convex downward for xc and convex upward for xc (or vice versa), then the point P0 ( c , f ( c )) is an inflection point of the curve ( Figure (2)). If f "( x ) exists near x = c and f "( x ) changes sign before and after x = c , then P0 ( c , f ( c )) is an inflection point of the curve. If a tangent is drawn to the curve at the inflection point, the curve is on the opposite side of the tangent before and after the inflection point. Also, the sign of the curvature is reversed before and after the inflection point (the curvature is 0 at the inflection point).

[Osamu Takenouchi]

Inflection point explanation diagram [figure]
©Shogakukan ">

Inflection point explanation diagram [figure]


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

曲線が凹凸の状態を変える点をいう。xy平面上の曲線y=f(x)は、axbにおいて、その点の任意の2点P1(x1,f(x1)),P2(x2,f(x2))をとるとき、その間にある曲線上の点が、つねに線分P1P2より下側にあるならば下に凸(あるいは上に凹)、つねに上側にあるならば上に凸(あるいは下に凹)という(の(1))。このとき、f(x)は、x=a,x=bを除いては連続、かつ各点において、片側の微分係数をもつ。また、f″(x)が存在すれば、y=f(x)は、f″(x)≧0が成立する区間で下に凸、f″(x)≦0が成立する区間で上に凸である。

 曲線y=f(x)において、ある点x=cについて、その近くで、xcに対して下に凸、xcに対して上に凸(あるいはその反対)であるならば、点P0(c,f(c))はこの曲線の変曲点である(の(2))。もし、x=cの近傍において、f″(x)が存在し、f″(x)がx=cの前後で符号を変ずるならば、P0(c,f(c))はこの曲線の変曲点である。変曲点で曲線に接線を引くと、変曲点の前後において、曲線はこの接線の反対の側にある。また、変曲点の前後において、曲率の符号は逆になる(変曲点では曲率は0)。

[竹之内脩]

変曲点説明図〔図〕
©Shogakukan">

変曲点説明図〔図〕


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Penguin - Penguin (English spelling)

>>:  Arrangement - henkyoku (English spelling) arrangement English

Recommend

Interest Rate Adjustment Council

This council was established in the former Minist...

frontier spirit

...This is closely related to the formation of po...

SD (System)

...SD is a method of clarifying the characteristi...

Mersenne number - Mersenne number

of 2 Power Should A natural number expressed as a ...

detective novel

…So, let us begin by examining the definition of ...

School City

…In America at that time, the popularization of s...

Ady Endre

Born: November 22, 1877 in Ehrminzent Died January...

Moschopoulos

A Byzantine scholar of ancient Greek literature ac...

Red Admiral (English spelling) redadmiral

...The larvae feed on the leaves of plants in the...

Stockpiling - Chikuyo

Fish, crustaceans, shellfish, and other marine an...

Egg Cycle

...This is because when small producers expand pr...

Peoria - Peoria (English spelling)

A city in central Illinois, USA, facing the Illin...

Japanese-Chinese mixed writing

A type of Japanese literary style. It is a style t...

Computer music

Music created using a computer. There are several ...

Berchem, N.

...Furthermore, the cutthroat free competition to...