Inflection point

Japanese: 変曲点 - へんきょくてん
Inflection point

It is the point where the curve changes its concave/convex state. A curve y = f ( x ) on the xy plane is convex downward (or concave upward) if the point on the curve between them is always below the line segment P1P2 when a ≦ x ≦ b holds two arbitrary points P1(x1 , f ( x1 ) ) , P2 ( x2 , f ( x2 )) and is always convex upward (or concave downward) if it is always above the line segment P1P2 ( Figure (1)). In this case, f ( x ) is continuous except for x = a , x = b , and has a differential coefficient on one side at each point. Also, if f ″( x ) exists, then y = f ( x ) is convex downward in the interval where f ″( x ) ≧ 0 holds, and is convex upward in the interval where f ″( x ) ≦ 0 holds.

If a curve y = f ( x ) has a point x = c that is convex downward for xc and convex upward for xc (or vice versa), then the point P0 ( c , f ( c )) is an inflection point of the curve ( Figure (2)). If f "( x ) exists near x = c and f "( x ) changes sign before and after x = c , then P0 ( c , f ( c )) is an inflection point of the curve. If a tangent is drawn to the curve at the inflection point, the curve is on the opposite side of the tangent before and after the inflection point. Also, the sign of the curvature is reversed before and after the inflection point (the curvature is 0 at the inflection point).

[Osamu Takenouchi]

Inflection point explanation diagram [figure]
©Shogakukan ">

Inflection point explanation diagram [figure]


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

曲線が凹凸の状態を変える点をいう。xy平面上の曲線y=f(x)は、axbにおいて、その点の任意の2点P1(x1,f(x1)),P2(x2,f(x2))をとるとき、その間にある曲線上の点が、つねに線分P1P2より下側にあるならば下に凸(あるいは上に凹)、つねに上側にあるならば上に凸(あるいは下に凹)という(の(1))。このとき、f(x)は、x=a,x=bを除いては連続、かつ各点において、片側の微分係数をもつ。また、f″(x)が存在すれば、y=f(x)は、f″(x)≧0が成立する区間で下に凸、f″(x)≦0が成立する区間で上に凸である。

 曲線y=f(x)において、ある点x=cについて、その近くで、xcに対して下に凸、xcに対して上に凸(あるいはその反対)であるならば、点P0(c,f(c))はこの曲線の変曲点である(の(2))。もし、x=cの近傍において、f″(x)が存在し、f″(x)がx=cの前後で符号を変ずるならば、P0(c,f(c))はこの曲線の変曲点である。変曲点で曲線に接線を引くと、変曲点の前後において、曲線はこの接線の反対の側にある。また、変曲点の前後において、曲率の符号は逆になる(変曲点では曲率は0)。

[竹之内脩]

変曲点説明図〔図〕
©Shogakukan">

変曲点説明図〔図〕


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Penguin - Penguin (English spelling)

>>:  Arrangement - henkyoku (English spelling) arrangement English

Recommend

Ming coins - Minsen

Coins minted during the Ming Dynasty (1368-1644) ...

Frank, IM (English spelling) FrankIM

…He also worked on the development and constructi...

Ossuary - Elephant

It is a container for storing ashes, but generall...

Peach blossom fan

A full-length play from the Qing Dynasty in China...

Safety valve - Anzenben (English) safety valve

A valve installed in equipment or piping that hand...

Seasoning (food) - Enbai

...The main source of sourness is citric acid. In...

Vienna System

A system of rule created in the aftermath of the ...

Ubaid culture - Ubaid culture

An ancient culture of Mesopotamia. Named after the...

dan day (English spelling) danday

…But there are some instruments unique to Vietnam...

Hauta

A type of Japanese music. Unlike theater music (su...

España (English spelling)

…Official name: Estado españolArea: 504,782 km2Po...

Association - Kaigoutai

An aggregate in which the same type of molecules o...

Level

Low-velocity layer. See 1.2. Source: Asakura Publi...

Tanzan Ishibashi

Economic commentator and politician. Born in Toky...

stabilizer

A device that prevents excessive rocking and swayi...