Ceva's theorem

Japanese: チェバの定理 - ちぇばのていり
Ceva's theorem

In triangle ABC, let P be a point different from the vertex, and let D, E, and F be the intersections of AP, BP, and CP with the opposite sides, respectively. Then the product of the three ratios that divide each side internally or externally is 1. That is,

This is called Ceva's Theorem, a theorem published in 1678 by Italian mathematician Giovanni Ceva (1647?-1734). The converse of this theorem also holds true. That is, if there are three points D, E, and F on the three sides BC, CA, and AB of a triangle ABC, and the product of the three ratios mentioned above is 1, then the three lines AD, BE, and CF intersect at one point. However, when two of the three points are on the extensions of the sides, the three lines connecting the vertices may be parallel.

The theorem that shows that three lines intersect at one point is called the Concentric Theorem, and the converse of Ceva's Theorem is its basis. The centroid, orthocenter, and incenter of a triangle can be derived using the converse of Ceva's Theorem.

[Toshio Shibata]

Proof of Ceva's Theorem
©Shogakukan ">

Proof of Ceva's Theorem


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

三角形ABCにおいて、頂点と異なる点をPとし、AP、BP、CPが対辺と交わるとき、その交点をそれぞれD、E、Fとすると、各辺を内分あるいは外分する三つの比の積が1になる。すなわち、

である。これをチェバの定理という。イタリアの数学者チェバGiovanni Ceva(1647?―1734)が1678年に発表した定理。この定理の逆も成り立つ。すなわち、三角形ABCの三辺BC、CA、AB上に3点D、E、Fがあり、前述の三つの比の積が1ならば、三直線AD、BE、CFは1点で交わる。ただし、3点のうち二つが辺の延長上にあるときは、頂点と結んでできる三直線が平行となることもある。

 三直線が1点で交わることを示す定理を共点定理というが、チェバの定理の逆はその基本となるものである。三角形の重心、垂心、内心など、チェバの定理の逆を用いて導くことができる。

[柴田敏男]

チェバの定理の証明
©Shogakukan">

チェバの定理の証明


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Chebyshev, Pafnutii L'vovich

>>:  Puzzle Ring - Chienowa

Recommend

Heger, F.

...In addition, since the development of bronze d...

Rule-making power

It refers to the authority of a certain national o...

Black wattle

...The flowers produce perfume and the bark produ...

Kamaage - Kamaage

… a blade used to cut grains, pasture grass, etc....

Kafwa - Kafwa

…It was especially popular among mystics as a way...

Banquet - Enshibatsu

…The Yamato dynasty appointed the monk Ekan, who ...

Kantengenge - Kantengenge (English spelling) jelly eelpout

This saltwater fish belongs to the order Percifor...

Aguirre Administration

… However, from 1864 to 1870, the Empire faced tw...

Swedish Films - Swedish Films

Georges Sadoul and other film historians around th...

hemichorea

… [Other chorea] In addition to the above, sympto...

Iwanami Shoten Co., Ltd.

Founded in 1913 by Iwanami Shigeo in Jinbocho, Kan...

Mencken, Henry Louis

Born: September 12, 1880 in Baltimore, Maryland [D...

Yakushiji clan

A medieval samurai family in Shimotsuke. A branch ...

Joseph Kessel

French novelist. Born in Argentina as a Russian J...

Breath sounds

…Physicians listen to these sounds over the chest...