Light emitted from distant stars and nebulae passes through various interstellar phases before reaching Earth. The light is absorbed differently depending on the phase of the material present. This is called interstellar absorption. When light passes through a phase of material consisting of neutral or partially ionized atoms, it is absorbed only at certain wavelengths specific to those atoms. This is called an absorption line. By analyzing the central wavelength, width, depth, and shape of the absorption line, it is possible to estimate the temperature of the material layer that contributed to the absorption, its density integrated along the line of sight, and the state of turbulent motion. Observations of absorption lines in the ultraviolet region have revealed that hot gas reaching 300,000 K (Kelvin) is widely distributed in the Galactic disk, and that hot gas with a temperature of nearly 100,000 K is also widespread in the Galactic halo. In addition, absorption lines in the visible light, infrared, and radio wave wavelength regions are used to diagnose interstellar material with temperatures between several hundred K and 10,000 K (estimates of temperature, density, and motion). In dense interstellar matter, there is a large amount of interstellar dust, which is made up of many molecules bonded together. It is known that when light passes through this interstellar dust, it is absorbed sharply in the wavelength range specific to the material that makes up the interstellar dust, and is absorbed continuously at all wavelengths with an absorption rate that is almost inversely proportional to the wavelength. Since the absorption rate is inversely proportional to the wavelength, the amount of absorption decreases as the wavelength increases from visible light to infrared light. For example, the visible light in the direction of the Milky Way (within the galactic plane) is about 10,000 light years, but in the infrared and radio wave regions, it is possible to see all the way to the center of the galaxy, which is 30,000 light years away. The sunset is also red for the same reason; ultraviolet and visible light are absorbed and scattered by dust in the atmosphere, and only red light with long wavelengths can reach us. This phenomenon in the case of distant stars is called reddening of starlight. Dark nebulae are places where the density of interstellar matter is particularly high and there is a large amount of cosmic dust, which blocks the light of the stars behind them, so they appear as dark regions on photographic plates. Cosmic dust exists in low-temperature matter with a temperature of less than 1000K, so the thickness of the low-temperature material layer that exists in the space between them can be estimated by the degree to which the starlight is absorbed and dimmed by the cosmic dust, and the degree of reddening. The above-mentioned method of probing the physical state of interstellar matter by analyzing the absorption of starlight in the material it passes through is also being applied to probing the distribution and physical state of matter on a cosmic scale by analyzing absorption lines and extinction in the spectra of quasars. [Ryo Ikeuchi] [References] | |Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
遠方の星や星雲から発せられた光は、地球に到達するまでにさまざまな星間物質相を通過してくる。その際、光はそこにある物質の相に応じて異なった吸収を受ける。これを星間吸収という。中性原子または部分的にイオン化した原子からなる物質相を通る際は、それらの原子に特有のある決まった波長のところでのみ吸収を受ける。これを吸収線という。吸収線の中心波長、吸収線の幅と深さと形を解析することにより、吸収に寄与した物質層の温度や視線方向に積分した密度、乱れた運動のようすなどを推定することができる。星間ガス中には30万K(ケルビン)にも達する高温ガスが銀河円盤中に広く分布していることや、銀河ハロー中にも10万K近くの高温ガスが広がっていることは、紫外線領域での吸収線の観測によって明らかにされた。ほかに、可視光、赤外線、電波の各波長領域での吸収線を利用して、温度が数百Kから1万Kの間の星間物質の診断(温度・密度・運動の推定)がなされている。 密度が高い星間物質中には、分子が多数結合した星間塵(じん)が多量に存在している。この星間塵中を光が通過すると、星間塵を構成する物質特有の波長域で鋭く吸収されるとともに、ほぼ波長に反比例するような吸収率で、どの波長においても連続的に吸収されるということが知られている。波長に反比例するような吸収率であるため、可視光から赤外線へと波長が長くなるにつれ、吸収される量は少なくなる。たとえば、天の川方向(銀河面内)の可視光で見通せる距離は1万光年くらいだが、赤外線や電波領域では距離が3万光年の銀河中心まで見通せる。夕陽が赤いのも同じ理由であり、大気中の塵(ちり)によって紫外線や可視光域の光は吸収・散乱されてしまって、波長の長い赤色の光しか届かないためである。遠方の星の場合のこのような現象を、星の光の赤化とよんでいる。 暗黒星雲は、とくに星間物質の密度が高く宇宙塵も多量に存在している場所で、背後にある星の光を遮ってしまうため、写真乾板上には何も写らず暗黒領域としてしか見えないのである。宇宙塵は、1000K以下の温度の低い物質に存在しているから、宇宙塵によって星の光が吸収され減光する程度や赤化の程度により、途中の空間に存在する低温の物質層の厚みを推定することができる。 以上のような、通過する物質中での星の光の吸収の解析から星間物質の物理状態を探るという方法は、準星のスペクトル中の吸収線や減光の解析から、宇宙規模での物質の分布や物理状態を探るのにも応用されている。 [池内 了] [参照項目] | |出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
>>: West Coast Climate - Seigankikou
Located in Kamigyo Ward, Kyoto City, this temple w...
...1320-1413. The third Turkish dynasty of the so...
Located in northeastern Canada, this island is the...
...The area around Honiara is highly urbanized, w...
It is famous as the place where Confederate Genera...
… [Ken Inoue]. … *Some of the terminology that me...
A ledger prepared by a sengoku or early modern dai...
An old method of washing Japanese clothing. After ...
It means Occitan. It is one of the Romance languag...
...in the 17th and 18th centuries, immigrants fro...
…A mountain castle located on Iimoriyama in the n...
A prehistoric culture of northern Mesopotamia, cha...
...In winter plumage, the upper side is gray and ...
A district of Kitakami city in the central-southe...
An architectural term. Also called a portico. A ro...