A person's perception of color differs from that of the majority of people. There are congenital color vision defects caused by genetic factors, and acquired color vision defects. The latter are caused by changes in any part of the body from the cornea to the cerebral cortex, and are caused by diseases of the retina, glaucoma, drug use, age-related changes, etc., but can also be caused by psychological factors. From an ophthalmological perspective, both are problems, but since general interest in color vision defects is focused on congenital ones, this article will follow that theme. [Physiological basis and classification of color vision] Photoreceptor proteins called visual pigments are expressed in the photoreceptor cells of the retina. Photoreceptor cells are classified into cones and rods based on their morphology, but the former are divided into three types spectrally: L cones, which contain visual pigments with an absorption maximum at long wavelengths (558 nm), M cones, which contain visual pigments with an absorption maximum at medium wavelengths (531 nm), and S cones, which contain visual pigments with an absorption maximum at short wavelengths (419 nm). These are also called red cones, green cones, and blue cones, respectively. On the other hand, rods contain only one type of visual pigment, rhodopsin (maximum absorption wavelength 500 nm). Humans distinguish colors based on the relative ratio of excitation of three types of cones. This type of color vision in people with normal color vision is called normal trichromacy. There are three types of cone function, but anomalous trichromacy is when the function of any of the L, M, or S cones differs from normal. Dichromacy is when the function of any of the L, M, or S cones is missing, while monochromacy is when only one type of cone function is present or all cones have lost their function and only the rods are active. In anomalous trichromacy and dichromatic vision, abnormalities in the function of the L, M, or S cones are called first, second, and third anomalies, respectively. The majority of congenital color vision deficiencies are trichromatic type I and II and dichromatic type I and II (Table on page 264). Because the absorption spectra of the visual pigments of the L and M cones overlap greatly, they see similar colors, making it difficult to sense the differences between red, orange, yellow, and green. For this reason, these are collectively called red-green color vision deficiencies, and approximately 8% of white males, 4% of black males, 5% of Japanese males, and 0.2% of Japanese females have this type of color vision. [Genetics of color vision deficiency] The gene encoding rhodopsin for rods is located on chromosome 3, and the gene encoding visual pigment proteins for S cones is located on chromosome 7. In contrast, the genes encoding visual pigment proteins for L and M cones (hereafter referred to as L and M genes) are both located on 28 of the long arm q of the X chromosome (Xq28), with one to several M genes linked downstream of the L gene, but only one of the two upstream genes is expressed. Therefore, gene deletion or hybrid gene formation due to unequal crossing over at this locus can cause red-green color vision deficiency. Although there are multiple L and M genes lined up on the X chromosome, only two of them are involved in color vision, so the genotype and phenotype may not match. For example, if the L, L, and M genes are lined up in this order, even if both the L and M genes are on the chromosome, the individual will show dichromatic type II anomaly in color vision tests. Conversely, if the L, M, and hybrid genes are lined up in this order, the individual will show normal trichromatic vision in color vision tests, even though the hybrid gene is detected in genetic tests. The 180th amino acid in the L and M genes is serine, but when this becomes alanine, the absorption maximum wavelength shifts by 8 nm. The proportions of such individuals in Japanese people are 22% and 10%, respectively. For this reason, even if someone has normal trichromatic vision, there is genetic polymorphism, including the possibility of carrying a hybrid gene, and color vision is also diverse. Red-green color blindness is inherited in a sex-linked recessive manner. Red-green color blindness is more prevalent in men because they have only one X chromosome, while it is rare in women because they have two, and if one X chromosome has a mutation, the other normal gene compensates. Women who have a mutated X chromosome but exhibit a normal color vision phenotype are called carriers. In contrast, anomalous trichromatic color vision and dichromatic third anomalous color vision are inherited in an autosomal dominant manner. Since congenital color vision deficiency is caused by genes, if it is a disease, the fundamental treatment is gene therapy. In recent years, there have been reports of successful gene therapy for color vision deficiency in monkeys, and this result raises the interesting question of whether the formation of neural circuits beyond the cones is innate or acquired, and opens up the possibility of applying this to humans. However, gene therapy is probably not realistic due to the necessity and cost of the treatment. [Color vision test] The isochromatic plate, also called the color vision test plate test, is composed of a combination of colors that are difficult for people with color vision deficiency to distinguish between shapes such as numbers and backgrounds. It is intended to quickly screen people suspected of having color vision deficiency from a large group of people. Many isochromatic plates have been devised to date, and the Ishihara test is one of the most well-established test plates both in Japan and overseas. The panel D-15 test is a color wheel arrangement test that consists of 16 colored caps extracted from a color wheel, and the subject arranges the remaining 15 caps in order of their closestness to the reference color. It is intended to determine the degree of color vision deficiency as strong or moderate or less, and if a typical pattern is shown, it is possible to diagnose primary and secondary deficiencies. The anomaloscope is a test device intended to perform a color matching method (color matching method) to definitively diagnose red-green color deficiency. A reference yellow light (589.3 nm) is presented in the lower half of the circle, and red (671 nm) and green (546 nm) lights are superimposed on the upper half. The subject changes the mixing ratio of the two lights in the upper half to make it the same color as the lower half. Anomalous trichromatism is when the mixing ratio differs from normal, and it is possible to determine primary and secondary anomalies, but it is difficult to distinguish between strong anomalous trichromatism and dichromatism. [Restrictions on occupations and qualifications] Since the 1850s, it has been argued that steam locomotive drivers and ship pilots with color vision deficiencies may misread signals and cause accidents, and later, various countries imposed restrictions on color vision for those working in the railroad and shipping industries. These restrictions were not only extended to include military personnel, police officers, firefighters, doctors, teachers, etc., but also led to restrictions on the qualifications for admission to educational institutions related to these professions. In Japan, until the 1980s, many universities imposed admission restrictions on those with color vision deficiencies, but today only a few remain. As the ideas of color barrier-free and universal design have become more widespread, occupational restrictions due to color vision are gradually disappearing in recent years. →Color →Vision →Career guidance [Suzuki Satoshi] "> Table Classification of congenital color vision deficiencies Latest Sources Psychology Encyclopedia Latest Psychology Encyclopedia About Information |
色の見え方が多数の人びとと異なること。遺伝的要因によって起こる先天色覚異常と,それ以外の後天色覚異常に分けられる。後者は角膜から大脳皮質に至るいずれかの部位の変化によって起こり,眼底疾患,緑内障,薬物の使用,加齢変化などを原因とするが,心理的要因によっても起こる。眼科学的には両者が問題となるが,色覚異常に対する一般的関心は先天性のものにあるので,本稿もそれに準じる。 【色覚の生理学的基礎と分類】 網膜の視細胞には視物質とよばれる光受容タンパク質が発現している。視細胞はその形態から錐体と桿体に分類されるが,分光的に前者は長波長(558nm)に吸収極大波長をもつ視物質を含むL錐体,中波長(531nm)に吸収極大波長をもつ視物質を含むM錐体,短波長(419nm)に吸収極大波長をもつ視物質を含むS錐体の三つに分かれる。これらはそれぞれ,赤錐体,緑錐体,青錐体ともよばれる。一方,桿体に発現する視物質はロドプシン(吸収極大波長500nm)1種類である。 ヒトは3種類の錐体の興奮の相対比によって色を区別している。正常色覚者のこのような色覚を正常3色型色覚normal trichromacyという。3種類の錐体機能が存在するが,L・M・S錐体のいずれかの働きが正常と異なるのが異常3色型色覚anomalous trichromacyである。L・M・S錐体のいずれかの機能が欠けているのが2色型色覚dichromacyで,錐体機能が1種類しか存在しないか全錐体の機能を失い桿体のみが働いているのが1色型色覚monochromacyである。異常3色型色覚と2色型色覚において,L・M・S錐体機能の異常をそれぞれ第1異常,第2異常,第3異常という。 先天色覚異常の大多数を占めるのが3色型第1異常および第2異常と2色型第1異常および第2異常である(264ページ表)。L・M錐体の視物質の吸収スペクトルの重複が大きいためこれらは似た色の見え方をし,赤,橙,黄,緑の間で色の違いを感じにくくなる。そのためこれらは赤緑色覚異常red-green color vision deficiencyと総称され,白人男性の約8%,黒人男性の約4%,日本人男性の約5%,日本人女性の約0.2%がこの種の色覚を有している。 【色覚異常の遺伝学】 桿体のロドプシンをコードする遺伝子は第3染色体に,S錐体の視物質タンパク質をコードする遺伝子は第7染色体に存在する。これに対してL錐体とM錐体の視物質タンパク質をコードする遺伝子(以下,L遺伝子,M遺伝子と表記)はどちらもX染色体長腕qの28(Xq28)に存在し,L遺伝子の下流に1個から数個のM遺伝子が結合しているが,これらの遺伝子のうち発現するのは上流の二つのうちのどちらかである。したがってこの遺伝子座において不等交叉による遺伝子欠失やハイブリッド遺伝子の形成が生じると,赤緑色覚異常を生じさせる原因となる。 X染色体上にL・M遺伝子が複数並んでいるにもかかわらず二つの遺伝子だけが色覚にかかわるので,遺伝子型と表現型が一致しないことがある。たとえばL・L・M遺伝子の順で並んでいる場合は,L・M遺伝子ともに染色体上にあっても色覚検査では2色型第2異常を示す。逆にL・M・ハイブリッド遺伝子の順に並んでいる場合は,遺伝子検査でハイブリッド遺伝子が検出されるにもかかわらず色覚検査では正常3色型色覚を示す。L・M遺伝子の180番目のアミノ酸はセリンであるが,これがアラニンになると吸収極大波長が8nm変化する。このような者の割合が日本人の場合それぞれ22%および10%いる。このため正常3色型色覚といえども,ハイブリッド型遺伝子をもっている可能性を含め遺伝子的に多型,色覚も多様である。 赤緑色覚異常は伴性劣性遺伝をする。男性に赤緑色覚異常が多いのはX染色体が一つだからであり,女性に少ないのは二つあって片方のX染色体に変異があってももう一方の正常型遺伝子が補うからである。変異のあるX染色体をもつのに正常色覚の表現型を示す女性を保因者carrierとよぶ。これに対し,異常3色型色覚および2色型第3異常は常染色体優性遺伝をする。 先天色覚異常の原因が遺伝子にある以上,もしこれが病気なら根本的な治療法は遺伝子治療である。近年サルの色覚異常の遺伝子治療に成功したとの報告があり,この成果は錐体より先の神経回路の形成が生得的か後天的かという興味深い問題を提起するとともに,ヒトへの応用の可能性を開くものである。しかし治療の必要性やコストの面から,遺伝子治療は現実的ではないであろう。 【色覚検査】 仮性同色表isochromatic plateは色覚検査表plate testともよばれ,数字などの形と背景とが色覚異常者にとって見分けにくい色の組み合わせから構成されている。短時間で多人数の集団から色覚異常の疑いのある者を抽出するスクリーニングを目的としている。現在までに多数の仮性同色表が考案されていて,なかでも石原式色覚検査表Ishihara testは国内外で最も定評のある検査表の一つである。パネルD-15テストpanel D-15 testは色相環配列検査の一つで,色相環から抽出された16個の色のついたキャップからなり,被検者は基準の色に近い順に残りの15個のキャップを並べる。色覚異常の程度を強度と中程度以下に判定することを目的としていて,典型的なパターンを示す場合は第1異常と第2異常の診断が可能である。アノマロスコープanomaloscopeは色合わせ法(等色法)を行なって赤緑色覚異常を確定診断することを目的とした検査器である。円の下半分に基準となる黄色(589.3nm)の光が呈示され,上半分に赤色(671nm)の光と緑色(546nm)の光が重ねて呈示される。被検者は上半分の二つの光の混合比を変化させて下半分と同じ色にする。混合比が正常と異なるのが異常3色型色覚で,第1異常と第2異常の判定をすることができる一方,強度の異常3色型色覚と2色型色覚の区別は困難である。 【職業・資格の制限】 1850年代から色覚異常をもつ蒸気機関車運転士や船舶操縦士が信号を見誤って事故を起こす可能性が主張され始め,のちに各国で鉄道業や海運業への従事において色覚による制限が設けられた。この制限は軍人,警察官,消防士,医師,教員等にも広がっただけでなく,これらの職業に通じる教育機関への入学資格の制限ももたらした。日本では1980年代まで色覚異常をもつ者に入学制限を設ける大学が多数あったが,現在では一部に残るだけである。カラーバリアフリーやユニバーサルデザインの思想が普及し,色覚による職業制限も近年なくなりつつある。 →色 →視覚 →進路指導 〔鈴木 聡志〕 "> 表 先天色覚異常の分類 出典 最新 心理学事典最新 心理学事典について 情報 |
…Works on ink include Kobaien Bokudan, Kobaien Bo...
Year of birth: Year of birth and death unknown. A ...
... Catholics, who suffered a great deal from the...
…[Shigeyuki Mitsuda]. … *Some of the terminology ...
The heads of the 23 special wards of Tokyo and war...
According to him, before the emergence of rationa...
[Born] 1882 [Died] 1947 German pedagogue. Leader o...
(From Inglês, Inglez Engelsch) An old name for Eng...
A village in Satsuma District, Kagoshima Prefectur...
A slave-like outcast in the ancient Japanese outc...
...At the end of the Edo period, the Hikone Domai...
In Kyushu, a coming-of-age ceremony is held for bo...
〘Noun〙 (Catamaran) ① A raft made of two or three l...
…A general term for the group of animals belongin...
〘 noun 〙 When two parties with opposing interests ...