All fluids have viscosity. When an object is placed in a uniform flow of water or air, the fluid sticks to the surface of the object. In other words, the flow velocity at the surface of the object is zero. As it moves away from the object, the flow becomes uniform. A thin layer where the flow velocity changes suddenly from the surface of the object to the uniform flow velocity is called a boundary layer. Alternatively, when an object is moved in a stationary fluid, the layer of fluid near the surface of the object that is dragged by the object is called a boundary layer. The thickness of this boundary layer increases with the viscosity. The resistance that an object experiences when moving through water or air is caused by the viscosity within this boundary layer (frictional resistance). In the case of a bluff object such as a cylinder or sphere, a backflow occurs within the boundary layer due to the pressure gradient acting on the object's surface, and the boundary layer is separated from the object's surface and pushed downstream. This is called boundary layer separation, and a layer of vortices is formed behind the object. These vortices split up one after another, causing complex turbulence. In such a case, a difference occurs in the pressure received from the fluid on the upstream and downstream sides of the object, and the object experiences pressure resistance in addition to friction resistance. In a streamlined object such as an airplane wing, boundary layer separation is difficult to occur, and pressure resistance is almost nonexistent. [Ryo Ikeuchi] Atmospheric motion and boundary layerBoundary layers are broadly divided into laminar boundary layers and turbulent boundary layers. A laminar boundary layer is a thin layer of fluid adjacent to a solid wall, where stress due to molecular viscosity dominates. A turbulent boundary layer is a turbulent layer adjacent to a laminar boundary layer, where stress due to turbulent eddies dominates. Atmospheric movement is also strongly influenced by the Earth's surface near the surface, and in the thin layer in contact with the surface, stress due to molecular viscosity dominates. In meteorology, except in special cases, the stress due to molecular viscosity can be ignored, so here we will only consider the turbulent boundary layer. The air layer in which the movement of the atmosphere exhibits unique mechanical properties due to friction with the earth's surface is called the (atmospheric) boundary layer. This layer is about 1 kilometer thick from the earth's surface. Above this level, the effect of friction with the earth's surface is almost nonexistent, so this is called the free atmosphere. In the free atmosphere, the geostrophic relationship holds approximately, so if you follow the wind direction vertically from the earth's surface, you will reach a height that matches the geostrophic wind direction. This height is called the friction height. This is a guide to the height of the atmospheric boundary layer. The atmospheric boundary layer is broadly divided into a lower and upper layer. The lower boundary layer refers to the air layer up to a height of about 100 meters above the earth's surface, and is called the surface boundary layer or ground (boundary) layer. The surface boundary layer and the atmospheric boundary layer are sometimes used synonymously. Within this layer, the shear stress is considered to be constant, and the movement of the air is governed only by frictional forces. The layer of the surface boundary layer where air is mixed up and down by convection is called the (atmospheric) mixed layer. The height of mixing is highest during the day when the highest temperature is reached. The thickness of the mixed layer and the average wind speed within the layer provide a useful guide for forecasting air pollution. The upper boundary layer is called the transition layer or Ekman (boundary) layer because it is between the surface boundary layer and the free atmosphere. The spiral obtained by successively connecting the tips of wind vectors in the vertical direction from the ground surface is called the Ekman spiral. In this layer, the shear stress is not constant, and the pressure gradient force, deflection force, and friction force are approximately balanced. The wind in the atmospheric boundary layer has a component that crosses the isobars and heads toward the low pressure area due to friction. For this reason, horizontal convergence and horizontal divergence correspond to low pressure and high pressure on the ground, respectively, and play an important role in the balance of energy in the atmosphere, the balance of water vapor that is closely related to precipitation phenomena, and the energy mechanism of disturbances such as typhoons. [Hiroshi Matano] [References] | | wind | | | |Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
すべての流体は粘性をもっている。水や空気の一様な流れの中に物体を置くと、流体は物体の表面に粘りつく。つまり物体表面で流速はゼロである。物体から離れるにしたがい、流れは一様流の速度になる。このような物体表面から一様流速になるまでの流速が急に変化する薄い層を境界層という。あるいは、静止した流体中で物体を動かすとき、物体に引きずられて動かされる物体表面付近の流体の層を境界層という。この境界層の厚みは粘性が大きいほど厚くなる。物体が水や空気中を動くとき受ける抵抗は、この境界層内の粘性によって引き起こされるもの(摩擦抵抗)である。円柱や球のような鈍い物体の場合、物体表面に働く圧力勾配(こうばい)のため、境界層内で逆流が発生し境界層が物体表面からはがれて、下流側へ押し出されていく。これを境界層のはがれといい、物体の後ろに渦の層ができることになる。この渦は、次々に分裂して複雑な乱流をつくる原因となる。このような場合、物体の上流側と下流側で流体から受ける圧力に差が生じ、摩擦抵抗以外に圧力抵抗も受けることになる。飛行機の翼のような流線形の物体では、境界層のはがれが生じにくく圧力抵抗がほとんど働かない。 [池内 了] 大気の運動と境界層境界層は、層流境界層と乱流境界層に大別される。層流境界層は固体壁に隣接した流体の薄い層で、ここでは分子粘性による応力が支配的である。乱流境界層は層流境界層に隣接する乱流層で、ここでは乱渦による応力が支配的である。大気の運動も、地球表面近くでは地表面の影響を強く受け、地表面に接した薄い層では分子粘性による応力が支配的である。 気象学では、特別の場合を除き、分子粘性による応力を無視することができるので、ここでは乱流境界層のみを考える。大気の運動が地表面の摩擦によって特有の力学的特性を表す気層を(大気)境界層とよんでいる。この層の厚さは地表から約1キロメートルである。これより高いところでは、地表の摩擦の影響がほとんどないので、これを自由大気とよぶ。自由大気では、地衡風の関係が近似的に成立するので、地表面から鉛直方向に風向を順次たどると、地衡風向と一致する高さに達する。この高さを摩擦高度とよぶ。これは大気境界層の高さを知る目安となる。大気境界層は下部と上部に大別される。下部境界層は地表から約100メートルの高さまでの気層をさし、地表境界層または接地(境界)層とよばれる。地表境界層と大気境界層を同義に用いることがある。この層内ではシャー応力が一定とみなされ、空気の運動は摩擦力のみに支配される。地表境界層のうち、対流によって空気が上下に混合される気層を(大気)混合層とよぶ。混合の及ぶ高さは、最高気温が出る日中にもっとも高くなる。混合層の厚さと層内の平均風速は大気汚染の予報に有力な目安を与える。上部境界層は地表境界層と自由大気の中間にあたるため、転移層またはエクマン(境界)層とよばれる。地表面から鉛直方向に風のベクトルの先端を順次連ねて得られるスパイラルを、エクマン・スパイラルとよぶ。この層内では、シャー応力が一定でなく、気圧傾度力、偏向力および摩擦力が近似的に平衡している。大気境界層内の風は摩擦力のために等圧線を横切って低圧部に向かう成分を有している。このため、地上の低気圧と高気圧にはそれぞれ水平収束と水平発散が対応し、大気中のエネルギー収支や、降水現象に関係の深い水蒸気の収支、また台風など擾乱(じょうらん)のエネルギー機構に対し重要な役割を演じている。 [股野宏志] [参照項目] | | | | | |出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
>>: Church modes (English spelling)
A hanging bell used in temples to summon the mass...
Year of death: August 4, 1563 (August 22, 1563) Ye...
A collection of historical materials from the end ...
…The shrines listed in the Shikinai are Tsuge Mik...
Born: December 28, 1903, Budapest, Hungary [Died] ...
...However, inflation and other economic problems...
Synchrotron radiation is a type of electromagnetic...
?-? A government official and poet in the late He...
...Kamishimo that is not made of the same fabric ...
...they include the Zahiriyya Mahasabha (1279, re...
…the common name for arthropods belonging to the ...
A substance that occurs naturally and is homogene...
…The correct title is “The Story of the Philosoph...
…In the Muromachi period, problems similar to mat...
...This is related to the fact that sports became...