Ring - Kan (English spelling) ring

Japanese: 環 - かん(英語表記)ring
Ring - Kan (English spelling) ring

The sum and product of any two integers is also an integer. By examining the properties of sum and product of integers and considering them as properties of the set Z of all integers, we arrive at the concept of a ring. In general, two binary operations called sum and multiplication can be considered for a set A, and for sum, A becomes a commutative group, and for multiplication, the associative law (ab)c=a(bc) (a, b, c∈A)
The distributive law (a+b)c=ac+bc exists between sum and multiplication.
a(b+c)=ab+ac
(a, b, c∈A)
If A is a ring, then A is called a ring. In particular, A has a commutative law ab=ba (a, b∈A) for products.
If A satisfies the above, then A is called a commutative ring.

The set Z of all integers and the set C[X] of all polynomials are both commutative rings. The set Mn(C) of all n-th order square matrices is also a ring, but when n≧2, M n (C) is not a commutative ring. There are many sets that are rings like this. Ring theory is the study of the common properties of these sets. In a ring A, there is no ring such that a+z=z+a=a (a∈A), like 0 in Z.
There is a special element z that satisfies. This z is called the zero element of the ring A. The zero element of the polynomial ring C[X] is a zero polynomial, and the zero element of the matrix ring M n (C) is an n-th order square zero matrix.

If the set of all elements of a ring A other than the zero element is a group with respect to product, then the ring A is called a field. The rational numbers, real numbers, and complex numbers are all fields, but Z is not a field. In a ring A, there is a set of elements such as 1 in Z, where ae = ea = a (a∈A).
If there is a special element e that satisfies this, then this e is called an identity element of the ring A.

A ring does not necessarily have an identity, but if it does, it has only one. Z has an identity 1, but the set of all even numbers is a commutative ring with no identity. The identities of C[X] and M n (C) are the constant polynomial 1 and the n-th degree unit matrix E n =(δ ij ) respectively.
ij is 1 if i = j, and 0 if i ≠ j)
It is.

[Tsuneo Kanno]

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

任意の二つの整数の和と積はまた整数になる。この整数の和と積の性質を調べ、整数全体の集合Zの性質としてとらえると、環という概念に達する。すなわち一般に、集合Aに和と積とよばれる2種類の二項演算が考えられ、和についてはAが可換群になり、積については、結合律
  (ab)c=a(bc) (a, b, c∈A)
を満たし、和と積の間には、分配律
  (a+b)c=ac+bc,
  a(b+c)=ab+ac
   (a, b, c∈A)
が成り立つとき、Aを環という。とくに環Aが積に関して、可換律
  ab=ba (a, b∈A)
を満たすとき、Aを可換環という。

 整数全体の集合Z、多項式全体の集合C[X]はともに可換環である。また、n次正方行列全体の集合Mn(C)は環であるが、n≧2のときMn(C)は可換環ではない。このように環になっている集合はたくさんある。これらの共通した性質を研究するのが環論である。環Aには、Zの0のように
  a+z=z+a=a (a∈A)
を満たす特殊な元zがある。このzを環Aの零元という。多項式環C[X]の零元は零多項式であり、行列環Mn(C)の零元はn次正方零行列である。

 環Aの零元以外の元全体の集合が積に関して群になっているとき、環Aを体(たい)という。有理数全体、実数全体、複素数全体はそれぞれ体であるが、Zは体でない。環Aに、Zの1のように
  ae=ea=a (a∈A)
を満たす特殊な元eがあるとき、このeを環Aの単位元という。

 環は単位元をもつとは限らないが、もてば、ただ一つである。Zは単位元1をもつが、偶数全体の集合は単位元をもたない可換環である。また、C[X]、Mn(C)の単位元は、それぞれ、定数多項式1、n次単位行列
  En=(δij)
   (δijはi=jなら1、i≠jなら0)
である。

[菅野恒雄]

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Han - Kan (English spelling)

>>:  Coffin

Recommend

Ubagahara

...The eruption points of Mt. Asama have moved ea...

North Pacific High Pressure

A type of high pressure system that develops in t...

Confessions - Confessions

JJ Rousseau's autobiography. The original titl...

Picasso - Pablo Ruiz Picasso

Spain's greatest artist of the 20th century. ...

Ciudad de los Reyes (English spelling)

…Spanish conquistador (conqueror of the New World...

Mel'nikov (English spelling) Pavel Ivanovich Mel'nikov

1818‐83 Russian author. Born into a poor noble fam...

Prince's lecture - Taishikō

〘Noun〙① A group of carpenters who worship Prince S...

mortician

…The emergence of Western funeral directors occur...

Tyumen - Tyumen (English spelling) Тюмень/Tyumen'

The capital of Tyumen Oblast in central Russia. I...

Kollwitz, Käthe

Born: July 8, 1867, Königsberg [Died] April 22, 19...

Choreography

...A person who does this professionally is calle...

La bohème

Puccini's four-act opera, composed to a libret...

Tokiwa Daijo - Tokiwa Daijo

A Buddhist scholar from the Meiji to Showa period...

Barker, R.

...The panopticon, a surveillance system invented...

Kingdom of Loango - Kingdom of Loango

Loango was a kingdom that existed in central Afric...