The sum and product of any two integers is also an integer. By examining the properties of sum and product of integers and considering them as properties of the set Z of all integers, we arrive at the concept of a ring. In general, two binary operations called sum and multiplication can be considered for a set A, and for sum, A becomes a commutative group, and for multiplication, the associative law (ab)c=a(bc) (a, b, c∈A) The set Z of all integers and the set C[X] of all polynomials are both commutative rings. The set Mn(C) of all n-th order square matrices is also a ring, but when n≧2, M n (C) is not a commutative ring. There are many sets that are rings like this. Ring theory is the study of the common properties of these sets. In a ring A, there is no ring such that a+z=z+a=a (a∈A), like 0 in Z. If the set of all elements of a ring A other than the zero element is a group with respect to product, then the ring A is called a field. The rational numbers, real numbers, and complex numbers are all fields, but Z is not a field. In a ring A, there is a set of elements such as 1 in Z, where ae = ea = a (a∈A). A ring does not necessarily have an identity, but if it does, it has only one. Z has an identity 1, but the set of all even numbers is a commutative ring with no identity. The identities of C[X] and M n (C) are the constant polynomial 1 and the n-th degree unit matrix E n =(δ ij ) respectively. [Tsuneo Kanno] Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
任意の二つの整数の和と積はまた整数になる。この整数の和と積の性質を調べ、整数全体の集合Zの性質としてとらえると、環という概念に達する。すなわち一般に、集合Aに和と積とよばれる2種類の二項演算が考えられ、和についてはAが可換群になり、積については、結合律 整数全体の集合Z、多項式全体の集合C[X]はともに可換環である。また、n次正方行列全体の集合Mn(C)は環であるが、n≧2のときMn(C)は可換環ではない。このように環になっている集合はたくさんある。これらの共通した性質を研究するのが環論である。環Aには、Zの0のように 環Aの零元以外の元全体の集合が積に関して群になっているとき、環Aを体(たい)という。有理数全体、実数全体、複素数全体はそれぞれ体であるが、Zは体でない。環Aに、Zの1のように 環は単位元をもつとは限らないが、もてば、ただ一つである。Zは単位元1をもつが、偶数全体の集合は単位元をもたない可換環である。また、C[X]、Mn(C)の単位元は、それぞれ、定数多項式1、n次単位行列 [菅野恒雄] 出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
<<: Han - Kan (English spelling)
...The eruption points of Mt. Asama have moved ea...
A type of high pressure system that develops in t...
JJ Rousseau's autobiography. The original titl...
Spain's greatest artist of the 20th century. ...
…Spanish conquistador (conqueror of the New World...
1818‐83 Russian author. Born into a poor noble fam...
〘Noun〙① A group of carpenters who worship Prince S...
…The emergence of Western funeral directors occur...
The capital of Tyumen Oblast in central Russia. I...
Born: July 8, 1867, Königsberg [Died] April 22, 19...
...A person who does this professionally is calle...
Puccini's four-act opera, composed to a libret...
A Buddhist scholar from the Meiji to Showa period...
...The panopticon, a surveillance system invented...
Loango was a kingdom that existed in central Afric...