Abelian group

Japanese: アーベル群 - あーべるぐん
Abelian group

A group that satisfies the commutative law, that is, a group that satisfies ab = ba for any elements a and b, is also called a commutative group. The Norwegian mathematician Abel studied this in relation to solving algebraic equations. When an operator symbol is expressed with a plus sign, it is often said to form a module. For example, the set of integers Z forms a module if we focus on addition. The identity element is 0, and the inverse of the integer z is -z.

The set of rational numbers with 0 removed forms an abelian group under multiplication. Its identity is 1, and the inverse of any nonzero rational number r is r -1 . The simplest abelian group is a group generated by a single element, that is, a cyclic group. For example, let ω be the cube root of 1, and ω ≠ 1, and
G = {1, ω, ω 2 }
Considering the set G, G forms a group. Moreover, all elements can be expressed in the form ω n (n = 0, 1, 2). In other words, G is a cyclic group with ω as a generator. In addition, the set of integers Z is an infinite cyclic group with 1 as a generator. This is because Z = {n・1|n = 0, ±1, ±2, …}
Here, n·1 is the inverse of adding n 1s if n is positive, and the inverse of adding |n| 1s if n is negative. It is proven that an abelian group generated from a finite number of elements is a direct product of some finite cyclic groups and some infinite cyclic groups. This is called the fundamental theorem of finitely generated abelian groups.

Abelian groups were actively studied in the 1870s by Kronecker, Frobenius, and others, and the fundamental theorem was also proven around that time.

[Tsuneo Adachi]

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

可換法則を満たす群、すなわち任意の元a、bに対し、ab=baを満たす群をいい、可換群ともいう。ノルウェーの数学者アーベルが代数方程式の解法に関連して考察した。演算記号がプラスで表されているときは、加群をなすということが多い。たとえば、整数の全体Zは加法に注目すれば、加群をなす。単位元は0で、整数zの逆元は-zである。

 有理数の全体から0を取り除いた集合は乗法に関してアーベル群をなす。単位元は1で、0でない有理数rの逆元はr-1である。アーベル群のなかでいちばん単純なものは、ただ一つの元から生成される群、すなわち巡回群である。たとえばωを1の3乗根とし、ω≠1とし、
  G={1,ω,ω2
という集合を考えると、Gは群をなしている。しかもすべての元がωn(n=0,1,2)の形で表せる。つまりGはωを生成元とする巡回群である。また整数の全体Zは1を生成元とする無限巡回群である。なぜなら
  Z={n・1|n=0,±1,±2,……}
と表せるからである。ここにn・1はnが正ならば1をn個加えたものであり、nが負ならば1を|n|個加えたものの逆元である。有限個の元から生成されるアーベル群は、いくつかの有限巡回群といくつかの無限巡回群の直積となることが証明される。これを有限生成アーベル群の基本定理とよぶ。

 アーベル群はクロネッカーやフロベニウスなどによって1870年代から盛んに研究され始め、基本定理もそのころ証明を与えられたものである。

[足立恒雄]

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Abelbaf, LL - Abelbaf

>>:  Apert, GV - Apert

Recommend

Stable Prayer - Umaya no Kito

… The professions of monkey pullers and monkey tr...

giornata

...However, in the late Middle Ages, not only did...

Akaboshi Daimyojin Shrine

…Amatsu Akaboshi is found in the Tenjin Honki of ...

Staatliche Museen (English spelling)

…After World War II, the Staatliche Museen was di...

human engineering

…In Europe, this field developed based on labor s...

Hamazani (English spelling) Abū al-Fadl al-Hamadhānī

968‐1008 Islamic writer and founder of Maqamat lit...

Cathaysiopteris

…The representative plant is Gigantopteris , whic...

Laze (English spelling)

(A portmanteau of lava and haze. Also called "...

Mokreishi - Mokreishi

A large evergreen shrub (illustration) of the Cela...

Gatsunagi - Connecting

...The body color is yellowish brown with many de...

Atactic

...That is, as shown in Figure 6, if the C-C bond...

Tsumura Betsuin

This is a Jodo Shinshu Honganji temple located in...

Bougainville (English spelling) Bougainville, Louis-Antoine de

Born: November 11, 1729 in Paris Died: August 31, ...

Aconcagua [river] - Aconcagua

…It was first climbed in 1897 by Fitzgerald's...

jamais vu (English spelling) jamaisvu

...It is said to be related to memory recognition...