...After centuries of futile attempts to find a solution, it was not until the 19th century that it was proven that the above three constructions were impossible using a finite number of ruler and compass constructions. In other words, it was recognized that construction using a ruler and compass is only possible when the numbers representing the lengths of the line segments that determine the desired figure can be obtained from the numbers representing the line segments that determine the given figure by addition, subtraction, multiplication, division, and square root. Based on this, in 1837 P. Wantzel (1814-48) proved that, for example, the equation x 3 -3 x -1 = 0 that appears in the problem of dividing a 60° angle into three equal parts, and the equation x 3 = 2 that appears in the problem of doubling a cube, cannot be solved by addition, subtraction, multiplication, division, and square root alone. Furthermore, when CL F Lindemann (1852-1939) proved in 1882 that pi, which is necessary to solve the problem of squaring a circle, is a transcendental number, the three great Greek problems were negatively solved. It is also impossible to construct a regular heptagon using only a ruler and compass. *Some of the terminology that mentions "Wantzel, P." is listed below. Source | Heibonsha World Encyclopedia 2nd Edition | Information |
…その後も何世紀にもわたっていたずらに解法が探されたのであるが,やっと19世紀になって,定規とコンパスを有限回用いる作図法では上の三つの作図は不可能であることが証明されたのである。すなわち,定規とコンパスによる作図が可能であるのは,求める図形をきめる線分の長さを表す数が,与えられた図形をきめる線分を表す数から加減乗除と開平で得られるときに限るということが認識され,このことから,例えば60゜の3等分問題に現れる方程式x3-3x-1=0も,立方体倍積問題に現れる方程式x3=2も加減乗除と開平だけでは解きえないことが,1837年ワンツェルP.Wantzel(1814‐48)によって証明され,また,円積問題を解くのに必要な円周率πは超越数であることが82年にリンデマンC.L.F.Lindemann(1852‐1939)によって証明されるに及んで,ギリシアの三大問題は否定的解決をみたのである。なお,正七角形の作図も定規とコンパスだけでは不可能である。… ※「Wantzel,P.」について言及している用語解説の一部を掲載しています。 出典|株式会社平凡社世界大百科事典 第2版について | 情報 |
<<: Wappers, G. (English spelling) WappersG
>>: Wäntig, H. (English spelling) WantigH
Years of birth and death unknown. A monk at Daian-...
…[Nakamura Toru]. … *Some of the terminology that...
A haiku book from the mid-Edo period. Compiled by...
A crab of the family Potamidae that lives in the c...
...However, since it was not permitted to dramati...
An evergreen tall tree (illustration) of the Eupho...
→Yucca Source : Heibonsha Encyclopedia About MyPed...
...The townscape first began on the north and sou...
A general term for animals in the phylum Platyhel...
A general term for the juice extracted from fruit...
…However, there was still no mechanism for removi...
...This is why the early typefaces created by Gut...
The idea that a person's personality and othe...
?-? A government official in the early Heian peri...
A marine animal belonging to the family Isomalida...