Geometric sequence - Touhisuuretsu

Japanese: 等比数列 - とうひすうれつ
Geometric sequence - Touhisuuretsu

A sequence of numbers created by multiplying a number by a certain number in succession. It is also called a geometric progression, and is sometimes written as GP (geometric progression). The first number is the first term, and the certain number to which it is successively multiplied is called the common ratio. If the first term is a and the common ratio is r, then the nth term, a n , is:
a n =ar n-1
In particular, when three numbers a1 , a2 , and a3 form a geometric progression, the number a2 in between is called the mean geometric term. The mean geometric term is expressed as the geometric mean of the two numbers a1 and a3 at both ends. That is,

(The sign can be either.) When the common ratio r is 1, the geometric sequence is a, a, a, … and the sum of the first n terms is na. When r ≠ 1, let s n be the sum of the geometric sequence with the first term a, common ratio r, and number of terms n.

The compound interest method generally used for calculating interest is as follows: if the principal is a yen and the interest rate is r, the total principal and interest for each period is a, a(1+r), a(1+r) 2 ,……
Therefore, geometric progressions and the formula for their sum are widely used in calculations of savings, pensions, and annual amortization.

A geometric sequence whose terms continue infinitely is called an infinite geometric sequence. This infinite geometric sequence a,ar,ar 2 ,……
The equation a+ar+ar 2 +……, which is made by connecting the terms with plus signs, is called a geometric series. If a≠0, this series converges only when |r|<1, and the sum is

This series is important as it is the most fundamental series. The convergence and divergence of many series can be discussed in comparison with an infinite geometric series.

[Osamu Takenouchi]

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

一つの数に、一定の数を次々に掛けていってできる数列。幾何数列ともいい、G. P.(geometric progression)と書くこともある。最初の数を初項、次々に掛ける一定数を公比という。初項をa、公比をrとするとき、その第n項anは、
  an=arn-1
と表される。とくに、三つの数a1,a2,a3が等比数列をなすとき、間の数a2を等比中項という。等比中項は両端の数a1、a3の相乗平均(幾何平均)で表される。すなわち

である(符号はどちらもありうる)。公比rが1の場合は、この等比数列はa,a,a,……となり、第n項までの和はnaである。r≠1のとき、初項a、公比r、項数nの等比数列の和をsnとすれば、

である。一般に利息計算で用いられる複利法は、元金a円、利率rとしたとき、一期間ごとに元利合計は
  a,a(1+r),a(1+r)2,……
となっていく等比数列をなす。したがって、等比数列、およびその和の公式は、積立貯金、年金、年賦償還の計算などに広く利用される。

 等比数列の項が無限に続くものを無限等比数列という。この無限等比数列
  a,ar,ar2,……
の項をプラスで結んでつくった式a+ar+ar2+……を等比級数という。この級数は、a≠0ならば|r|<1のときにのみ収束し、その和は

である。この級数は、もっとも基本的な級数として重要である。多くの級数の収束、発散を、無限等比級数との比較において論じることができる。

[竹之内脩]

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Dong Hitsubu

>>:  Tupi - Tupi (English spelling)

Recommend

Arbogast

…General of the late Roman Empire. A pagan Frank,...

Mount Muro - Murosan

The general term for the Muro (Obora) volcanic gro...

Shiotsuchi no Oji - Shiotsuchi no Oji

An old man who appears in Japanese mythology. He ...

Psychosurgery - Seishingeka (English spelling) psychosurgery

Psychosurgery is a brain surgery performed to res...

Yellow lily of the valley - Yellow lily of the valley

...The clustered flowers have various dark markin...

Raba porridge - Raba porridge

〘Noun〙 This refers to warm rice porridge. It is ca...

Brandenburg Concertos

A set of six concertos (BWV1046-51) composed by J...

Yoshikane Ashikaga

Year of death: 8th March 1199 (5th April 1199) Yea...

Jiraiya

Also written as Jiraiya. A phantom thief who appea...

Thermohaline circulation

...In this case, the important role is played by ...

Symplocos lucida (English spelling) Symplocoslucida

…[Yamanaka Futoshi]. … *Some of the terminology t...

Review Ceremony - Kanetsushiki

A ceremony held by the Self-Defense Forces. It is ...

chenopodium oil

...The varietal anthelminticum var. anthelminticu...

Chronological compilation of Takano's Spring and Autumn

A chronological history of Mount Koya written by t...

Fire Festival - Himatsuri

A ritual in which fire is lit to worship gods. Ma...