In a metric space, if there is an isometric transformation that maps A to B for any two given points A and B, this metric space is called a homogeneous space, a homogeneous space, or a homogeneous space. Homogeneous spaces appear in various fields of mathematics and are very important because they allow detailed analysis and contain many models that serve as the starting point for general theory. When any two points A and B are given in a plane or space, there is an isometric transformation that maps A to B. For example, a parallel translation that maps A to B. Similarly, when any two points A and B are given on a sphere, there is an isometric transformation of the sphere that maps A to B. In this case, for example, a symmetric translation about the perpendicular bisector of the line segment AB is an example. Therefore, planes, spaces, and spheres are homogeneous spaces. In addition, cylindrical surfaces such as elliptical cylinders and parabolic cylinders are all examples of homogeneous spaces (however, the distance between two points is considered to be the length of the shortest path within the cylindrical surface connecting the two points). This is because both a parallel translation in the direction of the pillar and a translation a fixed distance in a direction perpendicular to the direction of the pillar are isometric transformations of the cylinder's surface, and an arbitrary point can be moved to an arbitrary point by appropriately combining these isometric transformations. Since an isometric transformation does not change the distance between two points, the shape of the surface is the same everywhere in a homogeneous space. However, as can be seen from the example of the parabolic cylinder, it is important to note that the shape of the surface is not necessarily the same everywhere when viewed from the outside. [Ryoichi Takagi] [Reference] |Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
距離空間において、任意に与えられた2点A、Bに対してAをBに写すような等長変換があるとき、この距離空間を等質空間、均質空間、または斉次空間(せいじくうかん)という。等質空間は数学のさまざまな分野に現れ、詳細な解析が可能な点や、一般論の出発点となるモデルを多く含む点などで、非常に重要である。平面または空間において任意の2点A、Bが与えられたとき、AをBに写すような等長変換がある。たとえば、AをBに写すような平行移動がそうである。同様に、球面上に任意の2点A、Bが与えられたとき、AをBに写すような球面の等長変換がある。この場合は、たとえば線分ABの垂直二等分面に関する対称移動がそうである。したがって、平面や空間、および球面は等質空間である。また、楕円(だえん)柱面とか放物柱面などの柱面は、すべて等質空間の例である(ただし、2点間の距離として、その2点を結ぶ柱面内の最短経路の長さを考えるものとする)。なぜならば、柱の方向の平行移動も、柱の方向に垂直な方向に定距離だけ進むという移動も、ともに柱面の等長変換となり、これらを適当に組み合わせた等長変換で任意の点が任意の点に移るからである。 等長変換は2点間の距離を変えないから、等質空間では至る所が同じかっこうをしていることになる。しかし、放物柱面の例からもわかるように、外からみて至る所同じかっこうをしているとは限らないことに注意する必要がある。 [高木亮一] [参照項目] |出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
<<: Comrades - Doushi no hitobito
A mixture of two or more crystals that precipitat...
A marine fish belonging to the family Sciaenidae ...
…Born in Langur. Known as the “Unicorn Printmaker...
...This amount is small at star rise and star set...
…After the research of Penck and Brückner, the Da...
〘Noun〙 (converter, converter meaning "somethi...
This term is used in the Waste Disposal and Cleani...
...But it was the first "theatre of deconstr...
…Such social enterprises would eventually transfo...
A bivalve mollusk of the Mytilidae family (illustr...
An old and popular name for geisha (geigi). In th...
A general term for the group of ancient tombs and ...
This hot spring is located in the former Oten vill...
…Today's small diesel engines are lightweight...
…Although he gained some public acclaim for his s...