Crustal Movement - Nearby

Japanese: 地殻変動 - ちかくへんどう
Crustal Movement - Nearby

A phenomenon in which the crust that forms the Earth's surface deforms. This deformation can occur slowly or suddenly, and in various cases, parts of the crust can be destroyed as a result of deformation. Crustal movement can result in uplift, subsidence, tilting, and contraction of the land, the formation of faults and folds, and even large-scale deformation such as mountain building. Such structures that arise as a result of crustal movement are often referred to as crustal movement. Although they are both crustal movements, periodic deformations due to earthquake vibrations and earth tides are usually not included in crustal movement.

The cause of crustal movement is unclear, but in any case it is thought that it is due to the Earth's internal energy and that mantle convection plays a major role. There are many examples of obvious crustal movement accompanying large earthquakes. Famous examples include the formation of the Neodani fault during the Nobi earthquake in 1891 (Meiji 24), the uplift and horizontal movement of the southern Kanto region during the Great Kanto earthquake in 1923 (Taisho 12), and the tilt of Awashima Island following the Niigata earthquake in 1964 (Showa 39). There are many other similar examples. There are also crustal movements that occur slowly and gradually without earthquakes, rather than clear changes like these. The existence of such slow movements can only be discovered through precise observation and surveying.

When a change occurs very slowly, or even if it occurs suddenly, the amount of change is small, it is easy to think that it does not have much of an impact. However, if it continues and is repeated over a long period of time, the overall change becomes very large, and the results can be clearly observed. For example, sedimentary rocks deposited underwater can be seen on high mountains, two rock layers are upside down, and a geological structure that was originally one united can now be separated by several kilometers by a horizontal fault. All of the large mountain ranges of today are the result of an accumulation of such small crustal movements in the past. This is also proof that past crustal movements have played a major role that cannot be ignored in the formation of the current crust.

Currently, observation of crustal movements is mainly conducted for earthquake prediction. A large earthquake may cause small movements such as crustal uplift before the occurrence. The Niigata earthquake and the 1980 Izu Peninsula East Offshore Earthquake showed movements that were considered to be precursors of earthquakes. Therefore, monitoring crustal movements in areas where earthquakes are expected is considered important as one of the means of earthquake prediction. Repeated precise leveling, light wave, and precise gravity surveys, as well as observation of the tilt and expansion of the crust in underground observation tunnels, are being actively carried out. Furthermore, as the latest means of detecting crustal movements over a wide area, a method of highly accurate position measurement using VLBI (Very Long Baseline Interferometry) and GPS satellites (Global Positioning System) is being put into practical use. In the 1990s, it was discovered that considerable crustal movements do not occur in an instant, but over a period of several tens of seconds. This is called a slippery earthquake, and occurs without a large earthquake. However, when this type of movement occurs on the ocean floor, it can cause a tsunami, so there is an urgent need to detect this type of crustal movement and take measures against it.

[Nagasawa Takumi]

"Kimura Masaaki, Earthquakes and Crustal Movement: The Ryukyu Arc and the Japanese Archipelago (1985, Kyushu University Press)""Kimura Masaaki, Eruptions and Earthquakes: The Shaking Japanese Archipelago: Predicting Crustal Movement from Earthquake Swarms and Crater Floor Rising (1992, Tokuma Shoten)""Yonekura Nobuyuki (ed.), Natural History of the Pacific Rim (2000, Kokon Shoin)""Kimura Toshio, Crustal Movement in the Japanese Archipelago: A New Perspective (2002, Aichi Publishing)"

[References] | Earthquakes | Geodesy | Crust
Horizontal crustal movements due to the Kanto earthquake
This shows the horizontal deformation of the earth's crust caused by the 1923 Kanto earthquake. It was drawn by comparing the results of triangulation surveys conducted after the earthquake with those from before. Since triangulation surveys can only reveal relative changes, the diagram was drawn assuming that Mount Koseki in Tochigi Prefecture, far from the epicenter, was stationary. In some places, it can be seen that there was a deformation of more than 2m. ©Shogakukan ">

Horizontal crustal movements due to the Kanto earthquake


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

地球の表面を形づくっている地殻が変形する現象。この変形はゆっくりとおきたり、急激に生じたり、いろいろの場合があり、変形に伴って、地殻の一部が破壊されることもある。地殻変動の結果、土地の隆起や沈降、傾斜や伸縮がおこり、断層や褶曲(しゅうきょく)が生成し、さらに造山運動といった大規模な変形も生じる。このように地殻の動きの結果として生じた構造のことも、地殻変動ということが多い。同じ地殻の動きであっても、地震の振動や地球潮汐(ちょうせき)による周期的変形は、通常は地殻変動には含めない。

 地殻変動の生じる原因は明らかではないが、いずれにしても地球の内的エネルギーによるものであり、マントル対流の影響が大きいのではないかと想像されている。大地震に伴って明らかな地殻変動の生じた例は多い。1891年(明治24)の濃尾(のうび)地震の際の根尾谷(ねおだに)断層の生成、1923年(大正12)の関東大地震のときの南関東一帯の隆起と水平移動、1964年(昭和39)の新潟地震に伴う粟(あわ)島の傾動などは有名で、同様な例はほかにも多い。このようにはっきりした変化ではなく、地震を伴わずに、ゆっくりとわずかずつおこっている地殻変動もある。こうした緩慢な変動が存在することは、精密な観測、測量を行うことによって初めてわかってくる。

 変動が非常にゆっくりしている場合や、急激に生じたものでも変動量が小さい場合には、あまり大きな影響はないように思われがちである。しかし、それが長期にわたって継続し繰り返されるならば、全体では非常に大きな変動となり、その結果が明らかに観察できるようになる。たとえば、海中で堆積(たいせき)した堆積岩が高山でみられたり、二つの地層の上下が逆転していたり、もともと一つにまとまっていた地質構造が水平断層によって何キロメートルも離れてしまうなどの現象である。現在の大きな山脈は、すべてこうした過去の小さな地殻変動の積み重ねでできたものである。このことは、現在の地殻の形成には、過去の地殻変動が、無視できない大きな役割を果たしてきたことの証明でもある。

 現在、地殻変動の観測は、主として地震予知のために行われている。大規模な地震は、その発生に先だって地殻の隆起などの小さな変動を引き起こしていることがあり、新潟地震や1980年の伊豆半島東方沖地震では、地震の前兆と思われる変動が確認されている。そのため、地震の予想される地域で地殻変動を監視することが、地震予知の手段の一つとして重要視されている。そして、精密水準測量、光波測量、精密重力測量などの繰り返し、地下観測坑における地殻の傾斜、伸縮観測が精力的に実施されている。さらに広域の地殻変動を検出する最新の手段として、VLBI(超長基線電波干渉法)やGPS衛星(Global Positioning System=全地球測位システム)を利用して高精度の位置測定をする方法が実用化されつつある。1990年代に入って、かなりの規模の地殻変動が、一瞬におこるのではなく、数十秒の時間をかけて生ずる場合のあることがわかってきた。これはヌルヌル地震などとよばれ、あまり大きな地震を伴わずにおこる。しかし海底でこの変動が生じると津波は押し寄せるので、この種の地殻変動の検出と対策が急がれている。

[長沢 工]

『木村政昭著『地震と地殻変動 琉球弧と日本列島』(1985・九州大学出版会)』『木村政昭著『噴火と地震――揺れ動く日本列島 群発地震と火口底上昇で地殻変動を予測する』(1992・徳間書店)』『米倉伸之編著『環太平洋の自然史』(2000・古今書院)』『木村敏雄著『日本列島の地殻変動 新しい見方から』(2002・愛智出版)』

[参照項目] | 地震 | 測地 | 地殻
関東地震による地殻の水平変動
1923年(大正12)の関東地震による地殻の水平変動を示す。地震後に行った三角測量の結果を以前のものと比較して描かれた。三角測量では相対的な変化しかわからないので、震央から遠く離れた栃木県晃石山を不動と仮定して図が描かれている。ところによっては2mを超える変動があったことがわかる©Shogakukan">

関東地震による地殻の水平変動


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Underground stem - Chikakei

>>:  Phenomenology of perception

Recommend

Polar Urals

The Ural Mountains begin in the north on the Arct...

Family allowance - Kazokute Ate

Family benefits have two meanings. First, they ar...

Spakenburg (English spelling)

A fishing village in the province of Utrecht in th...

Opithandra primuloides (Miq.) BLBurtt.

A summer-green perennial plant of the Gesneriaceae...

americium

Am. Atomic number 95. Group 3 actinide element wi...

dummy

…touch down: When a defending player touches the ...

Illegal Pitch

In either case, the batter is called out. Illegal...

Defense contributions

Cash donations made by citizens to the military in...

Peucedanum terebinthaceum (English notation) Peucedanum terebinthaceum

…[Murata Gen]. … *Some of the terminology that me...

Artificial hatching - jinkou fuka

Artificial hatching of eggs from poultry, silkwor...

Kyoya Taku

…In reality, it flows out of the Yellow River nor...

The Divine Favourite Emperor Philosophy

The idea that the basis of rulership is "Empe...

Paper Dolls - Kamibina

A pair of paper Hina dolls, a boy and a girl. The...

Damask rose

...This was discovered in southern France around ...

Kitayama cedar

A regional brand of the Kinki region, Kyoto prefec...