Vertical

Japanese: 垂直 - すいちょく
Vertical

When two lines on the same plane intersect at a right angle, the two lines are said to be perpendicular. If a line that passes through point A and is perpendicular to line l intersects with l at point H, the line segment AH is called the perpendicular line dropped from A to l , H is called the foot of the perpendicular line, and the length of the line segment AH is called the length of the perpendicular line. This AH is the shortest line from A to l .

We define vertical in space as follows:

[1] Perpendicularity of two lines When two lines l and l ' are drawn parallel to each other through point O and are perpendicular to each other, l and l ' are said to be perpendicular and written as ll '. If there is point A and a line l that does not pass through it, draw a line that passes through A and intersects with l perpendicularly, and let H be the point of intersection, then AH is called the perpendicular line dropped from A to l .

[2] Perpendicularity between lines and planes When a line h is perpendicular to all lines on plane α, h is said to be perpendicular to α, and is written as h ⊥α. When a line h is perpendicular to two non-parallel lines on plane α, h is perpendicular to α. If H is the point where a line passing through point A, which is not on plane α, and perpendicular to α intersects with α, the line segment AH is called the perpendicular line dropped from A to α, and H is called the foot of the perpendicular line. The perpendicular line AH is the shortest line from A to a point on α.

[3] Perpendicularity of two planes When the angle between two planes α and β is a right angle, α and β are said to be perpendicular, and written as α⊥β. This is the case when a perpendicular line drawn through a point on the intersection of α and β and to the intersection on each plane is perpendicular. When a straight line h is perpendicular to plane α, the plane containing h is perpendicular to α.

[Minoru Kurita]

Three Perpendicular Lines Theorem

The following theorems hold for point A not on plane α, line l on α, point K on l , and point H on α. ​​These are the theorems of the perpendicular lines. (Sometimes only (1) is called the theorem of the perpendicular lines, and (2) and (3) are called the reverse.)

(1) If the line AH⊥α, HK⊥ l , then AK⊥ l
(2) If the line AH⊥α, AK⊥ l then HK⊥ l
(3) If AH⊥HK, HK⊥l , AK⊥l then AH⊥α
[Minoru Kurita]

Coordinates and Perpendicular

(1) When considering rectangular coordinates on a plane, the condition for two vectors with rectangular components ( a1 , a2 ) and ( b1 , b2 ) to be perpendicular is a1b1 a2b20 . Also, two straight lines y m1x k1 , y m2x k2
The condition for being perpendicular is m 1 m 2 = -1.

(2) When considering rectangular coordinates in space, the condition for two vectors with rectangular components ( a1 , a2 , a3 ) and ( b1 , b2 , b3 ) to be perpendicular is a1b1 a2b2a3b3 0 .
In addition, the plane ax + by + cz + d = 0
For ( a , b , c ), the orthogonal components of the vector perpendicular to the plane are ax + by + cz + d = 0, a'x + b'y + c'z + d ' = 0.
The condition for the lines to be perpendicular is aa ' + bb ' + cc ' = 0.
It is.

[Minoru Kurita]

Three Perpendicular Lines Theorem
©Shogakukan ">

Three Perpendicular Lines Theorem


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

同一平面上の2直線が交わってできる角が直角であるとき、2直線は垂直であるという。点Aを通って直線lに垂直な直線がlと交わる点をHとするとき、線分AHをAからlへ下ろした垂線といい、Hを垂線の足、線分AHの長さを垂線の長さという。このAHは、Aからlに至る線のなかで長さのもっとも短いものである。

 空間での垂直を次のように定義する。

〔1〕2直線の垂直 2直線ll′に対し、点Oを通ってそれぞれに平行に引いた2直線が垂直であるとき、ll′は垂直であるといい、ll′と書く。点Aとこれを通らない直線lがあるとき、Aを通ってlに垂直に交わる直線を引き、その交点をHとするとき、AHをAからlに下ろした垂線という。

〔2〕直線と平面の垂直 直線hが平面α上のすべての直線に垂直のとき、hはαに垂直であるといい、h⊥αと書く。直線hが、平面α上にあって平行でない2直線に垂直のとき、hはαに垂直である。平面α上にない点Aを通ってαに垂直な直線がαと交わる点をHとするとき、線分AHをAからαへ下ろした垂線といい、Hを垂線の足という。垂線AHは、Aからα上の点に至る線のなかで、長さのもっとも短いものである。

〔3〕2平面の垂直 2平面α、βのつくる角が直角のとき、αとβは垂直であるといい、α⊥βと書く。これは、α、βの交線上の点を通って、各平面上で交線に引いた垂線が垂直になっている場合である。直線hが平面αに垂直のとき、hを含む平面はαに垂直である。

[栗田 稔]

三垂線の定理

平面α上にない点A、α上の直線ll上の点K、α上の点Hについて次の定理が成り立つ。これらが三垂線の定理である((1)だけを三垂線の定理、(2)(3)をその逆ということもある)。

 (1)直線AH⊥α, HK⊥lならばAK⊥l
 (2)直線AH⊥α, AK⊥lならばHK⊥l
 (3)AH⊥HK, HK⊥l, AK⊥lならばAH⊥α
[栗田 稔]

座標と垂直

(1)平面上で直角座標を考えるとき、直角成分が(a1, a2), (b1, b2)である二つのベクトルが垂直であるための条件はa1b1a2b2=0である。また、2直線
  ym1xk1, ym2xk2
が垂直であるための条件はm1m2=-1である。

(2)空間で直角座標を考えるとき、直角成分が(a1, a2, a3), (b1, b2, b3)の二つのベクトルが垂直であるための条件は
  a1b1a2b2a3b3=0
である。また、平面
  axbyczd=0
については、(a, b, c)はこの平面に垂直なベクトルの直角成分で、2平面
  axbyczd=0, axbyczd′=0
が垂直になるための条件は
  aa′+bb′+cc′=0
である。

[栗田 稔]

三垂線の定理
©Shogakukan">

三垂線の定理


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Vertical distribution

>>:  Hydrofoil craft

Man
Man
Blog    

Recommend

Shimoto - Kato

…It re-emerged as one of the powerful nations dur...

Ono Seisuke

...Around 1662-63 (Kanbun 2-3), the second son, M...

Cyclone

A tropical cyclone that occurs in the Indian Ocean...

Tamanoi - Tamanoi

A common name for the area around Higashimukojima ...

US dollar (English spelling) US dollar

…Usually, the dollar simply refers to the currenc...

Pygmaioi (English spelling)

In Greek legend, they were a race of dwarf people ...

Ballad in Secret Language - Ballad by Ingo

At present, there are four groups of works that c...

Speed ​​- Sokudo (English spelling) velocity

In everyday life, it is used in the same sense as...

Red-breasted hawkweed (Chinese hawkweed) - Red-breasted hawkweed

...The name "Kyusen" was given to this ...

Salicaceae

…Also, the Latin word for willow, vimen, also mea...

Nutritionally enhanced miso - Eiyokyoukamiso

...They are summarized in Table 1. There are also...

Avianus - Avianus

…This remains today. Avianus in the 4th century a...

Spiraea nervosa (English spelling) Spiraeanervosa

…[Yamanaka Futoshi]. … *Some of the terminology t...

Date

The former name of a town (Datemachi) in Date Cou...

Kronborg slot

…Until the 15th century, church and castle archit...