Vertical

Japanese: 垂直 - すいちょく
Vertical

When two lines on the same plane intersect at a right angle, the two lines are said to be perpendicular. If a line that passes through point A and is perpendicular to line l intersects with l at point H, the line segment AH is called the perpendicular line dropped from A to l , H is called the foot of the perpendicular line, and the length of the line segment AH is called the length of the perpendicular line. This AH is the shortest line from A to l .

We define vertical in space as follows:

[1] Perpendicularity of two lines When two lines l and l ' are drawn parallel to each other through point O and are perpendicular to each other, l and l ' are said to be perpendicular and written as ll '. If there is point A and a line l that does not pass through it, draw a line that passes through A and intersects with l perpendicularly, and let H be the point of intersection, then AH is called the perpendicular line dropped from A to l .

[2] Perpendicularity between lines and planes When a line h is perpendicular to all lines on plane α, h is said to be perpendicular to α, and is written as h ⊥α. When a line h is perpendicular to two non-parallel lines on plane α, h is perpendicular to α. If H is the point where a line passing through point A, which is not on plane α, and perpendicular to α intersects with α, the line segment AH is called the perpendicular line dropped from A to α, and H is called the foot of the perpendicular line. The perpendicular line AH is the shortest line from A to a point on α.

[3] Perpendicularity of two planes When the angle between two planes α and β is a right angle, α and β are said to be perpendicular, and written as α⊥β. This is the case when a perpendicular line drawn through a point on the intersection of α and β and to the intersection on each plane is perpendicular. When a straight line h is perpendicular to plane α, the plane containing h is perpendicular to α.

[Minoru Kurita]

Three Perpendicular Lines Theorem

The following theorems hold for point A not on plane α, line l on α, point K on l , and point H on α. ​​These are the theorems of the perpendicular lines. (Sometimes only (1) is called the theorem of the perpendicular lines, and (2) and (3) are called the reverse.)

(1) If the line AH⊥α, HK⊥ l , then AK⊥ l
(2) If the line AH⊥α, AK⊥ l then HK⊥ l
(3) If AH⊥HK, HK⊥l , AK⊥l then AH⊥α
[Minoru Kurita]

Coordinates and Perpendicular

(1) When considering rectangular coordinates on a plane, the condition for two vectors with rectangular components ( a1 , a2 ) and ( b1 , b2 ) to be perpendicular is a1b1 a2b20 . Also, two straight lines y m1x k1 , y m2x k2
The condition for being perpendicular is m 1 m 2 = -1.

(2) When considering rectangular coordinates in space, the condition for two vectors with rectangular components ( a1 , a2 , a3 ) and ( b1 , b2 , b3 ) to be perpendicular is a1b1 a2b2a3b3 0 .
In addition, the plane ax + by + cz + d = 0
For ( a , b , c ), the orthogonal components of the vector perpendicular to the plane are ax + by + cz + d = 0, a'x + b'y + c'z + d ' = 0.
The condition for the lines to be perpendicular is aa ' + bb ' + cc ' = 0.
It is.

[Minoru Kurita]

Three Perpendicular Lines Theorem
©Shogakukan ">

Three Perpendicular Lines Theorem


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

同一平面上の2直線が交わってできる角が直角であるとき、2直線は垂直であるという。点Aを通って直線lに垂直な直線がlと交わる点をHとするとき、線分AHをAからlへ下ろした垂線といい、Hを垂線の足、線分AHの長さを垂線の長さという。このAHは、Aからlに至る線のなかで長さのもっとも短いものである。

 空間での垂直を次のように定義する。

〔1〕2直線の垂直 2直線ll′に対し、点Oを通ってそれぞれに平行に引いた2直線が垂直であるとき、ll′は垂直であるといい、ll′と書く。点Aとこれを通らない直線lがあるとき、Aを通ってlに垂直に交わる直線を引き、その交点をHとするとき、AHをAからlに下ろした垂線という。

〔2〕直線と平面の垂直 直線hが平面α上のすべての直線に垂直のとき、hはαに垂直であるといい、h⊥αと書く。直線hが、平面α上にあって平行でない2直線に垂直のとき、hはαに垂直である。平面α上にない点Aを通ってαに垂直な直線がαと交わる点をHとするとき、線分AHをAからαへ下ろした垂線といい、Hを垂線の足という。垂線AHは、Aからα上の点に至る線のなかで、長さのもっとも短いものである。

〔3〕2平面の垂直 2平面α、βのつくる角が直角のとき、αとβは垂直であるといい、α⊥βと書く。これは、α、βの交線上の点を通って、各平面上で交線に引いた垂線が垂直になっている場合である。直線hが平面αに垂直のとき、hを含む平面はαに垂直である。

[栗田 稔]

三垂線の定理

平面α上にない点A、α上の直線ll上の点K、α上の点Hについて次の定理が成り立つ。これらが三垂線の定理である((1)だけを三垂線の定理、(2)(3)をその逆ということもある)。

 (1)直線AH⊥α, HK⊥lならばAK⊥l
 (2)直線AH⊥α, AK⊥lならばHK⊥l
 (3)AH⊥HK, HK⊥l, AK⊥lならばAH⊥α
[栗田 稔]

座標と垂直

(1)平面上で直角座標を考えるとき、直角成分が(a1, a2), (b1, b2)である二つのベクトルが垂直であるための条件はa1b1a2b2=0である。また、2直線
  ym1xk1, ym2xk2
が垂直であるための条件はm1m2=-1である。

(2)空間で直角座標を考えるとき、直角成分が(a1, a2, a3), (b1, b2, b3)の二つのベクトルが垂直であるための条件は
  a1b1a2b2a3b3=0
である。また、平面
  axbyczd=0
については、(a, b, c)はこの平面に垂直なベクトルの直角成分で、2平面
  axbyczd=0, axbyczd′=0
が垂直になるための条件は
  aa′+bb′+cc′=0
である。

[栗田 稔]

三垂線の定理
©Shogakukan">

三垂線の定理


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Vertical distribution

>>:  Hydrofoil craft

Recommend

Qiang - Today

In ancient China, they were a mainly Tibetan ethn...

Afar Issa - Afar Issa

…Official name = Republic of DjiboutiJumhūrīya al...

The Hokkaido Development Agency's Transfer of Public Property Incident

This was an incident that occurred in the early Me...

sightseeing

…In German, there is the word Fremdenverkehr, whi...

Igomori Festival

It is also written as Saigo-sai or Igo-sai. When t...

Porridge - Kayushoku

...Dietary therapy can be broadly divided into ge...

Basidium

…In algae and fungi, they are unicellular and the...

"Portrait of a Woman from Auxerre" - Lady from Auxerre

…In the middle of the 7th century BC, large sculp...

Dors, E. (English spelling) DorsE

...This view classified the Renaissance and Baroq...

Radioactive equilibrium

...This condition is satisfied everywhere inside ...

Sint-Martens-Latem (English spelling)

…Fauvism was represented by the sculptor Wouters,...

Islamic State Theory

The Islamic world is a region of the world that i...

Rainier

Also called Linea. An archaic spirochete that flou...

Azeketsu

… In ancient texts such as the Suwen (Huangdi Nei...

Total oxygen demand

...abbreviation of biochemical oxygen demand), to...