Inertial frame

Japanese: 慣性系 - かんせいけい
Inertial frame

A coordinate system in which Newton's laws of motion apply is called an inertial system. According to Newton's second law of motion, the acceleration of a mass when a force is applied to it is equal to the force divided by the mass. Acceleration is the change in the velocity of a mass measured in a reference coordinate system, so if the reference coordinate system itself has an acceleration, the magnitude of the acceleration of the mass will naturally be different. Therefore, Newton's laws of motion apply only when a certain coordinate system is used as the reference. This coordinate system is an inertial system, and from the perspective of the inertial system, a mass that is not subjected to an external force moves at a constant speed. Also, since the acceleration of a mass does not change when viewed from a coordinate system that moves at a constant speed relative to the inertial system, such a coordinate system is also an inertial system. The transformation between two inertial systems, the ( x , y , z ) coordinate system and the ( x ', y ', z ') coordinate system, is called a Galilean transformation.

The Earth-fixed coordinate system is, to a rough approximation, an inertial system, but in reality it is a rotating coordinate system that rotates relative to the inertial system due to the Earth's rotation, so if observed in the Earth-fixed coordinate system, the plane of oscillation of the pendulum rotates slowly. The star-fixed coordinate system is approximately an inertial system.

[Hajime Tanaka]

[Reference] | Laws of motion | Galilean transformations | Point mass | Newton

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

ニュートンの運動法則が成り立つ座標系を慣性系という。ニュートンの運動の第二法則によれば、質点に力を加えたときに生じる加速度は、力を質量で割ったものに等しい。加速度は、基準とする座標系のもとで測った質点の速度の時間変化であるから、もし、基準とする座標系自身が加速度を有していれば、得られた質点の加速度の大きさも当然異なってくる。したがって、ニュートンの運動法則が成り立つのは、ある特定の座標系を基準にした場合である。この座標が慣性系であって、慣性系からみれば、外力を受けない質点は等速度で運動している。また、慣性系に対して一定の速度で移動する座標系からみても、質点の加速度は変わらないから、このような座標系も慣性系である。二つの慣性系、(xyz)座標系と(x'、y'、z')座標系の間の変換は、ガリレイ変換とよばれる。

 地球に固定した座標系は、粗い近似では慣性系であるが、実際は地球の自転のため慣性系に対して回転している回転座標系である。このため地球に固定した座標系で観察すれば、振り子の振動面はゆっくりと回転する。恒星に固定した座標系はほぼ慣性系である。

[田中 一]

[参照項目] | 運動の法則 | ガリレイ変換 | 質点 | ニュートン

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Dry form - Dry form

>>:  Controlled airspace

Recommend

Artisan's Collection - Artisan's Collection

A type of genre painting from the early modern per...

γ-Cellulose - Ganmaseru Rose

… In a chemical sense, cellulose is a polysacchar...

Crops and Man

...In 1966, Sasuke Nakao, in his book "The O...

Transparent

…The representatives of Spanish Baroque architect...

Nakasendo - Nakasendo

One of the five main roads in the Edo period, it ...

Catley, W.

…However, these original species are rarely culti...

Kink boundary

… [In the case of crystals] A band-like portion w...

Insulation fiberboard

…It is mainly made by breaking down wood fibers a...

Kusamaruhachi - Kusamaruhachi

...The leaves fall off in an unclear abscission l...

Total Differential - Zenbibun

A term used to describe the small change in the v...

Wisdom fever - Chienetsu

A fever of unknown cause seen in infants around 6...

Kama Sutra - Kāmasūtra (English spelling)

An ancient Indian erotic text written by Bhatsyay...

Wales - Wales (English spelling)

A peninsula-like region in the southwest of Great...

Kitano's millet rice cakes - Kitano's millet rice cakes

Another reason was the expansion of confectionery...

Castro, Fidel

Born: August 13, 1926, near Biran [Died]2016.11.25...