Nucleus (mathematics) - Write

Japanese: 核(数学) - かく
Nucleus (mathematics) - Write

…However, it was Volterra V. (1860-1940) and Fredholm E. Fredholm (1866-1927) who systematically discussed integral equations. In general, when f ( x ) and K ( x , y ) are known functions and φ( x ) is an unknown function, they are called Fredholm-type integral equation and Volterra-type integral equation, respectively, and K ( x , y ) is called the kernel of these equations. Let K1 ( x , y )= K ( x , y ), and Kn ( x , y ) defined for n >1 is called the iteration kernel. …

From [Linear Mapping]

...For a linear mapping f : VW , Ker( f ) = { aV | f ( a ) = 0} and Im( f ) = { f ( a ) | aV } are linear subspaces of V and W , respectively. Ker( f ) is called the kernel of f , Im( f ) is called the image of f , and the dimension of Im( f ) is called the rank of f . If V and W are both finite-dimensional, and e1 , ..., en are the basis of V , and e1 ' , ..., em ' are the basis of W , then an element a of V can be written as follows. ...

*Some of the terminology explanations that mention "nucleus (mathematics)" are listed below.

Source | Heibonsha World Encyclopedia 2nd Edition | Information

Japanese:

…しかし積分方程式を系統的に論じたのは,ボルテラV.Volterra(1860‐1940)とフレドホルムE.I.Fredholm(1866‐1927)である。 一般的な形として,f(x),K(x,y)を既知関数,φ(x)を未知関数とするとき,はそれぞれフレドホルム型積分方程式,ボルテラ型積分方程式と呼ばれ,K(x,y)をこれらの方程式の核という。K1(x,y)=K(x,y)とおき,n>1で定義したKn(x,y)を反復核という。…

【線形写像】より

…線形写像fVWについて,Ker(f)={aVf(a)=0},Im(f)={f(a)|aV}はそれぞれV,Wの線形部分空間になる。Ker(f)をfの核,Im(f)をfの像と呼び,Im(f)の次元をfの階数という。V,Wがともに有限次元であるとして,e1,……,enVの,e1′,……,em′がWの基底とすると,Vの元aはと書ける。…

※「核(数学)」について言及している用語解説の一部を掲載しています。

出典|株式会社平凡社世界大百科事典 第2版について | 情報

<<:  Nucleus (nerve) -

>>:  Horns (constellation) -

Recommend

Restaurant - restoran (English spelling) restaurant

It refers to a facility or business that serves m...

Longley, CT (English spelling) LongleyCT

…The Archbishop of Canterbury is the convener and...

Besant - Besant (English spelling) Annie Besant

A British social reformer of Irish descent. After...

attitude

…It is also the name of a dance with slow music t...

Magnolia (magnolia) - Magnolia (English spelling)

A general term for the world-famous flowering tree...

Bailey, N.

…First, two English dictionaries, presumably edit...

Koonen, AG (English spelling) KoonenAG

…He started out as an actor. In 1914, he founded ...

Hans Christian Andersen's Fairy Tales - Hans Christian Andersen's Fairy Tales

A collection of fairy tales by Andersen. He wrote ...

Photoreading

… [Reading] It is said that there are three stage...

"Foreign Land Chronicles"

...Describes the locations, customs, and products...

razor fish

…The carapace is transparent and arranged in thre...

Vitus - Vitus

...Storks are messengers that carry them. For thi...

Konstitutsionno-demokraticheskaya partiya

...A liberal political party in the final days of...

Angiography - angiography

Also called angiography. An examination method in ...

Matrilineal descent

…A pattern of membership transmission limited to ...