Gauss's theorem

Japanese: ガウスの定理 - がうすのていり
Gauss's theorem

In general, when considering a space R surrounded by a closed surface S in the field of a vector v , if the unit vector on the outward normal to this surface is n , and the basis vectors of the Cartesian coordinate system are i , j , and k , then the area integral of ( vn ) is

The theorem that says that it is equal to the volume integral of the whole space.

This theorem is particularly important in electromagnetism as Gauss's theorem for electricity. In other words, if we consider any closed surface in a static magnetic field in a vacuum, it is derived that the total electric field flux penetrating this closed surface is equal to 4π times the algebraic sum of all the charges within that surface. If the electric field vector is E , then

Here, the integral on the right side means the total amount of electricity in the volume V enclosed by the closed surface S. The differential form of this theorem is div E =4πρ
Similarly, Gauss's theorem for magnetism is div H =4πρ m
where ρ and ρ m are the charge and magnetization density, respectively.

[Hiroshi Yasuoka]

Gauss's rule
©Shogakukan ">

Gauss's rule


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

一般にベクトルvの場で、一閉曲面Sに囲まれた空間Rを考えたとき、この曲面上で外向き法線上の単位ベクトルをnとし、直交座標系の基本ベクトルをijkとすれば、(vn)の面積積分は

の空間全体に対する体積積分に等しいという定理。つまり

この定理は電磁気学では、電気に関するガウスの定理としてとくに重要である。つまり、真空中の静磁場内で任意に閉曲面を考えるとき、この閉曲面を貫く全電場束は、その面内にある全電荷の代数和の4π倍に等しいことが導かれる。電場ベクトルをEとすれば、

ここで右辺の積分は、閉曲面Sによって囲まれた体積V内の全電気量を意味する。またこの定理の微分形として
  div E=4πρ
がある。同様に磁気に対するガウスの定理は
  div H=4πρm
となる。なおここでρおよびρmはそれぞれ電荷および磁化密度である。

[安岡弘志]

ガウスの定理
©Shogakukan">

ガウスの定理


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Gaussian distribution

>>:  Gauss formulas

Recommend

Arisaema seppikoense (English spelling)

… [Mitsuru Hotta]... *Some of the terminology exp...

Coptic calendar - Coptic calendar

A solar calendar originating from Ancient Egypt. A...

Passerinae

…The subfamily Bubalornithinae includes the Afric...

Emperor Organ Theory

A constitutional theory that holds that the Emper...

Retirement allowance

A general term for monetary benefits paid by a co...

Engel's law

This is an empirical law that is stably observed b...

Owl fly (Owl fly)

A general term for insects belonging to the family...

Robin Hood

A legendary English hero. He is said to have lived...

NKVFNV - NKVFNV

… [The Essence of Labor Unions] A trade union is ...

Kiyomasa Ishitani - ISHIGAI・KIYOMASA

Year of death: Tenmei 2.11.10 (1782.12.14) Year of...

Bell, Currer (English spelling) BellCurrer

...Family circumstances forced them to return hom...

Cryptanthus

Cryptanthus is a plant of the genus Cryptanthus, w...

Italian Concerto - Italian Concerto

…From around 1930, instead of composing church mu...

All-out holiday struggle - Issei Kyuka Tousou

...Therefore, in terms of relations with employer...

Fruit (plant) - kajitsu

The pistil of an angiosperm flower develops after...