A device that artificially creates a uniform air flow and examines how the flow changes when an object is placed in the flow, and conversely, the effect of the flow on the object, or the movement of the object in the flow. It was originally used in the design and research of aircraft, but is now also used in the design of automobiles, railway cars, bicycles, ships, etc., the effect of wind on structures such as skyscrapers, towers, and bridges, the relationship between wind and buildings in specific urban areas for disaster prevention and environmental improvement, analysis of turbulence generated by mountains, and is also used to study the posture of athletes in ski jumping, downhill skiing, bicycle racing, etc., and to train athletes against wind pressure, as well as to develop equipment. [Kazuo Ochiai] Aircraft and wind tunnelWind tunnels have been used extensively in aircraft. Using scale models or the actual aircraft, they can be used to measure the aerodynamic forces acting on the aircraft, such as lift, drag, and moment, as well as to measure the aerodynamic characteristics of the airfoil and wing alone, and to observe and measure the state of airflow and pressure distribution on the surfaces of the wings and fuselage, the state of flow interference at the joints between the wings and fuselage, the effect of the ground on the aircraft during takeoff and landing and low-altitude flight, and other phenomena that cannot be predicted by calculation alone regarding the performance and aerodynamic characteristics of aircraft. Since aircraft are the object of air, the results of calculations do not necessarily match the reality. Therefore, when developing a new aircraft, wind tunnel tests are first performed using a scale model to investigate the aerodynamic characteristics and the state of airflow around the aircraft in advance, and if any defects are corrected, there are few parts that are in poor condition when the actual aircraft is completed, and even if modifications are required, they are limited to a very small area. Compared to immediately building an actual aircraft and conducting tests, tests and improvements can be performed more easily at the model stage than on the actual aircraft, saving effort, cost, and time, and being safer. Wind tunnel testing is also used to investigate the causes of aircraft accidents. However, wind tunnel testing is not an all-purpose method. (1) When using a scale model, the results of wind tunnel tests are unlikely to match those of flight tests of an actual aircraft due to the size effect (differences in Reynolds number), (2) each wind tunnel has different characteristics, so that even with the same model, the measurement results will vary slightly depending on the wind tunnel used, and (3) it is difficult to obtain high-speed airflow from transonic to supersonic speeds. To address these problems, various countermeasures and ideas have been devised for the structure and design of wind tunnels. [Kazuo Ochiai] Types of wind tunnelsA wind tunnel of a suitable type is used depending on the purpose of the test. [1] Classification by purpose (1) Transonic and supersonic wind tunnels - for testing high-speed aircraft. Many of them can only sustain high flow speeds for a very short period of time. (2) High-pressure (variable pressure) wind tunnels - to make model test results closer to those of the actual aircraft, i.e. to make the Reynolds number uniform, the air pressure is increased and its density is increased. (3) Gas tunnels - to use denser gases to make the Reynolds number uniform. (4) Full-scale wind tunnels - to use the actual aircraft as is. (5) Free-flight wind tunnels - to allow a model to move freely in the airflow and observe its movement. (6) Vertical or spiral wind tunnels - to observe spiraling motion. (7) Smoke tunnels - to create smoke trails to observe the airflow conditions around the aircraft. [2] Classification by air flow type: (1) Air circulation type: Gottingen type. This is the most widely used type due to its efficiency. (2) Single air duct type without air circulation: NPL type, Eiffel type, etc. [3] Classification by the location of the measuring part: (1) Open type - The measuring part is placed in an open room. Used for low-speed wind tunnels. (2) Closed circuit type - The measuring part is placed in a closed circuit. Used for high-speed wind tunnels. Wind tunnels are ranked primarily by the wind speed and the size of the air outlet, with larger outlets being higher. Larger outlets allow for the use of larger models and improve measurement accuracy, but they also require higher construction and operating costs. [Kazuo Ochiai] Test methods and their evolutionA scale model or the actual aircraft is supported on the measuring section by thin piano wire, a pole, or an arm. The various forces generated by blowing wind on the model are measured by scales attached to the piano wire, pole, or arm, and the measurement results are combined to calculate the aerodynamic forces. This method is said to have been invented by the Wright brothers, and the principle is still the same today. However, the old method was done manually using a wind tunnel balance, which required a lot of skilled manpower and was inefficient as it took time to calculate. Nowadays, strain gauges are used instead of wind tunnel balances, and measurement results are input directly into a computer for calculations, so accurate data can be obtained in a short time. The method of suspending the model with piano wire is no longer used today, except for low-speed aircraft. Wind tunnels are easy to operate when the wind speed is up to about 50% of the speed of sound. However, when the speed is transonic or supersonic, shock waves or blockages occur in the measurement area, making measurements difficult. In addition, a huge power source is required to create the high-speed airflow, and the noise level during operation is very high, making operation extremely difficult. In some foreign countries, wind tunnels are built in mountainous areas, powered directly from power plants, and noise pollution is avoided. Recently, with the development of computers, computer simulations have become possible. That is, a computer is given values that are close to those of the wind tunnel test, and the calculation results are displayed in computer graphics. This method does not require the construction of a model, and measurements can be made by simply inputting the values into the computer without actually blowing wind. This solves the problems of noise and power, and is considered to be particularly suitable for investigating the aerodynamic characteristics of high-speed flight, which is affected by shock waves. However, an aircraft is made up of not only wings but also a fuselage, tail, landing gear, engines, etc., and computer graphics alone are not enough to investigate the aerodynamic characteristics of the entire aircraft from the relative relationships of these components. Ultimately, it is necessary to actually expose a model (or the real thing) to the wind and check the characteristics. In addition, while the phenomena of supersonic flight are relatively easy to explain theoretically, many modern aircraft are being developed that can fly at speeds below the speed of sound for economic and practical reasons. Current wind tunnels can be fully utilized for this purpose, and as computers become more widespread and developed, their use is expected to continue to increase as measurement accuracy improves. [Kazuo Ochiai] [Reference] |The Japan Aerospace Exploration Agency (JAXA) Chofu Aerospace Center's continuous circulation low-speed wind tunnel. It is the largest wind tunnel for aircraft in Japan, with a measurement section cross-section of 6.5m x 5.5m and a maximum wind speed of 70m per second. Chofu, Tokyo ©JAXA "> Gottingen wind tunnel ©Shogakukan "> Classification by the type of air flow in the wind tunnel Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
一様な空気の流れを人工的につくりだし、流れの中に置かれた物体による流れの変化の状態、逆に流れが置かれた物体に及ぼす影響、あるいは流れの中の物体の運動などを調べる装置。初めは航空機の設計や研究に用いられていたが、現在では自動車、鉄道車両、自転車、船舶などの設計、高層ビル、塔、橋梁(きょうりょう)など構造物に対する風の影響、防災や環境整備のための特定市街地域での風と建築物との関係、山岳によって発生する乱気流の解析などにも利用され、また、スキーのジャンプや滑降競技、自転車競技などでの選手の姿勢の研究や風圧に対する選手の訓練、あるいは用具の開発などの用途もある。 [落合一夫] 航空機と風胴広範囲に風胴を利用してきたのは航空機である。縮尺模型、または実際の機体をそのまま用いて、揚力、抗力、モーメントなどの機体に働く空気力を測定するほか、翼型や翼だけの空気力学的特性を測定したり、翼や胴体の表面の空気の流れの状態や圧力の分布状態、翼と胴体との結合部分などの流れの干渉状態、離着陸や低空飛行の場合に地表面が飛行機に及ぼす影響、そのほか航空機の性能や空気力学的な特性について、計算だけでは予測できない現象を観察、測定することができる。航空機は空気を対象とするので、計算結果がかならずしも実際と一致するとは限らない。そこで、新しく航空機を開発するとき、まず縮尺模型による風胴試験を行って、あらかじめ空気力学的特性や機体周囲の空気の流れの状態を調べ、欠陥を修正しておけば、実機が完成したときにぐあいの悪い部分が生じることは少なく、また改修するにしてもごく狭い範囲で足りる。いきなり実物を製作して試験を行うのと比較して、模型の段階でならば試験や改善を実機よりも容易に行うことができ、手間や費用、時間の節減ができ、安全である。また、風胴試験は航空機事故の原因の探究にも利用される。 しかし、風胴試験も万能ではない。(1)縮尺模型を使用すると、寸法効果(レイノルズ数の違い)によって風胴試験の結果と実機の飛行試験の結果が一致しにくい、(2)風胴ごとにそれぞれ特性が異なり、同じ模型でも使用した風胴によって測定結果に多少の相違が生じる、(3)遷音速から超音速にかけての高速度の気流を得ることがむずかしい、などの問題点があり、風胴の構造や様式にいろいろの対策やくふうが凝らされている。 [落合一夫] 風胴の種類試験の目的に応じてそれぞれ適当な様式の風胴が使用される。 〔1〕目的別の分類 (1)遷音速および超音速風胴―高速機の試験用。ごく短時間しか速い流速を持続できないものが多い。(2)高圧(変圧)風胴―模型による試験結果を実機に近づける、つまりレイノルズ数をそろえるために、空気の圧力を高め密度を大きくする。(3)ガス風胴―密度の大きいガスを使用し、レイノルズ数をそろえる。(4)実物風胴―実機をそのまま使用する。(5)自由飛行風胴―模型を気流の中で自由に運動させてその動きを観察する。(6)垂直またはきりもみ風胴―きりもみ運動を観察する。(7)煙(けむり)風胴―煙の筋(すじ)をつくって機体の周囲の気流の状態を観察する。 〔2〕空気を流す様式による分類 (1)空気を環流させる型―ゲッティンゲン型。効率の面から、現在もっとも多く使われている。(2)環流させない単一風路型―NPL型、エッフェル型など。 〔3〕測定部分の位置による分類 (1)開口型―測定部分を開放した室内に置く。低速の風胴に用いられる。(2)閉回路型―測定部分を密閉した回路の中に置く。高速の風胴に用いられる。 風胴のランクは、主として風速と気流の噴き出し口の面積の大きさで判定され、大きいものほどランクは高い。噴き出し口が大きければ大型の模型が使用でき、測定精度もよくなるが、建設費や運用費も多くかかる。 [落合一夫] 試験方法とその変遷測定部に縮尺模型または実機を細いピアノ線か支柱、腕(ステング)などで支える。模型に風を当てて生じた種々の力を、ピアノ線や支柱・腕に仕掛けた秤(はかり)で測定し、測定結果を総合して空気力学的諸力を算出する。この方式はライト兄弟の創始といわれるが、現在も原理的には大きな違いはない。しかし、古くからの方法は風胴天秤(てんびん)を用いて人力で行っていたので、熟練した人手を多く必要とするうえ、計算にも時間を要して能率的でなかった。現在は風胴天秤のかわりにひずみ計を使い、測定結果を直接コンピュータに入力して計算させるので、正確なデータが短時間で得られる。なお、ピアノ線で模型を吊(つ)る方式は、低速機を除いて現在では用いられない。 風胴の運転は風速が音速の50%程度までなら容易である。しかし、遷音速や超音速になると、測定部に衝撃波が生じたり、閉塞(チョーク)状態となって測定が困難になるばかりでなく、高速度の気流をつくりだすために莫大(ばくだい)な動力源を必要とし、運転中の騒音も非常に大きくなり、運用がきわめて困難になる。外国では風胴を山岳地帯に建設して発電所から直接電力の供給を受け、かつ騒音による公害を避けているところもある。最近では、コンピュータの発達に伴ってコンピュータによるシミュレーションが行われるようになった。すなわち、コンピュータに風胴試験と近似した数値を与えておき、計算結果をコンピュータ・グラフィックで表現させるものである。この方法だと模型を製作する必要がなく、測定にあたっては実際に風を吹かすことなくコンピュータに数値を入力するだけでよい。これにより、騒音や動力の問題が解決され、とくに衝撃波の影響を受ける高速飛行の空力的特性を調べるのに好適と考えられている。 しかし、航空機は翼だけでなく胴体や尾翼、着陸装置、エンジンなどによって構成されており、その相対的な関係から機体全体の空力的特性を調べるには、コンピュータ・グラフィックのみではまだ十分とはいいきれない。最終的には模型(または実物)に実際に風を当てて確かめてみる必要がある。 また超音速飛行の諸現象は理論的な解明が比較的容易であるのに対し、現代の航空機は経済性や実用性の面から音速以下の速度をもつ機体が多く開発されており、この目的には現在使われている風胴が十分に利用でき、コンピュータの普及・発達に伴って測定精度を高めながら、今後もさらに広く用いられていくものとみられる。 [落合一夫] [参照項目] |宇宙航空研究開発機構(JAXA)調布航空宇宙センターの連続循環式低速風胴。日本最大の航空機用風胴で、測定部断面6.5m×5.5m、最大風速は毎秒70m。東京都調布市©JAXA"> ゲッティンゲン型風胴 ©Shogakukan"> 風胴の空気を流す様式による分類 出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
<<: Feng Dao (English spelling)
A faction of the papacy in medieval Italian histor...
Japan's first empirical anatomy book. Written...
...Currently, in addition to these basic ship ins...
…The site of the capital of the 18th Dynasty refo...
Also written as kugutsu mawashi, kairai shi, etc. ...
The larvae of flies and horseflies. They have smal...
...In the case of the Toratsuka Tomb in Ibaraki P...
…There are many kinds of kimchi that are called k...
A collection of essays and critiques written by p...
This term was proposed by CSPittendrigh (1958) as ...
A type of administrative litigation. A lawsuit fil...
The effect of the standards of a labor agreement r...
A clinical physician from the Southern Song Dynast...
…[Yoshiharu Iijima]. … *Some of the terminology t...
A seven-colored arc-shaped band that appears from ...